9月 기하 28, 29, 30 Solution
9월 4일에 시행된 25학년도 9월 모의평가 수학의 난이도는 작년 수능, 올해 6월에 비해 낮은 편으로, 문항을 해결하기 위한 풀이경로와 정답이 되는 상황은 쉽게 상상이 가능하지만 미지수가 많은 계산(21번), 하나라도 놓치면 틀리는 꼼꼼함을 요구하는 문항 (20번, 22번) 등에서 끈기와 집중력을 요구했던 시험지었습니다. + 15번 문항의 경우 24.09.22처럼 부분적분 아이디어가 들어간 거의 동일한 문항이었습니다.
다만, 기하 문항은 공통 영역에 비해 까다로운 편으로 28번의 경우 주어진 기하 세팅의 특수함을 정확히 인지한 채로 접근해야 했고, 30번의 경우 주어진 결론부가 불편한 벡터들의 합으로 정의되어있어 기준 잡고 평행이동을 잘 수행해야 했던 까다로운 문항이었습니다. 다만 발상적인 풀이를 요구하지 않기에 공통 영역에서 시간을 확보하셨다면 충분히 해결하실 수 있는 문항들이었습니다.
28. #구와 구의 교선은 원 #보장된 수직, 보장된 길이
1. P,Q가 이루는 곡선 상상하기 -> OB를 지름으로 하는 구와 구S의 교선은 O2를 중심으로 하고 구 S위의 zx평편과 평행한 원이 되며, OA를 지름으로 하는 구와 구S의 교선은 O1을 중심으로 하고 구 S위의 yz평면과 평행한 원이 됩니다.
2. 주어진 길이 이용하기 -> OQ=R=10, OB=10루트2에서 1:1:루트2 , 각 OQB=90에서 삼각형 OQB는 직각이등변 삼각형이 됩니다. -> O2=(0,5루트2,0)을 얻습니다.
3. 주어진 기하관계의 특수함에 주목하기-> 원 C1과 C2는 수직이므로 이들이 만나 생기는 두 점은 원의 중심을 베이스로 만들어진 직사각형 위에서 만남을 알 수 있고, 이를 그림으로 나타낼 수 있습니다.
4. 코사인 값 이용하기->코사인법칙으로 N1N2의 길이를 구하고, 다시 피타고라스를 이용해 OH( H는 N1 N2의 중점 )의 길이를 얻습니다. (혹은 코사인 덧셈정리를 이용하여 코사인 세타/2=2/루트5를 얻어도 괜찮습니다.)
5. 직각삼각형에서 피타고라스를 이용하며 구하는 값 도출하기. O2N1H에서 피타고라스를 통해 O2H=OO1=루트30을, OO1N1에서 피타고라스를 통해 ON1=rC1=O1P=루트 70을 얻을 수 있고, 결론부 삼각형 APO에서 닮음을 이용해 OA의 길이를 구하고 a의 값을 구합니다.
29. #이차곡선의 정의요소 #삼각비
30. #벡터는 평행이동이 자유로움 #벡터가 이루는 도형 #벡터 분해
#29
1. 포물선의 정의요소를 연상합니다. -> PF를 긋고 PF=PH를 얻습니다.
2. 주어진 길이관계 이용하기 -> PH=PF=3l、FH=2루트2l로 세팅합니다.
3. 삼각비를 두가지 방법으로 표현하기-> 직선 HP는 x축에 평행하므로, 각 세타(각PHF)를 각 HFO로 이동시킬 수 있고 삼각형 PHF, HFO에서 코사인 세타를 표현한 값이 동일하다는 식에서 l=3을 얻습니다.
4. 이차곡선의 정의요소(쌍곡선)를 연상합니다 -> P(9,2루트14)에서 PF'=15, PF'-PF=6=2a에서 a=3을 얻습니다.
4. 쌍곡선의 초점과 정의요소 식 이용하기-> c^2=16=a^2+b^2에서 b^2=7을 얻습니다.
#30
1. 벡터의 종점이 이루는 자취를 도형으로 간주하기-> OQ벡터에서 평행이동 부분 OD를 분리하면 직각삼각형 부분만 예쁘게 분리할 수 있음을 인지합니다.
2. 기준 잡고 벡터식 조작하기-> 원점 O에 대해, PQ+OE벡터를 OY라 정의하고 벡터식을 조작하겠습니다. 이때, OQ=OD+DQ로 분리함이 깔끔함을 이용하며, 도형의 합으로 인식하기 위해 뻴셈 연산보다는 역벡터를 이용한 덧셈 연산이 유리함을 인지합니다.
PQ+OE=OQ-OP+OE=(OD+DQ)-OP+OE=OD+DQ+OP'+OE [단, OP'은 OP의 역벡터]
4. 비교적 단순한 평행이동 부분과 도형을 분리합니다 -> OD+OE=OX=(3,2)로 연산할 수 있고, 결론부 OY=OX+OP'+DQ로 순차적으로 합벡터를 구해봅니다 -> (1)~(3)과정을 따라가 OY의 자취를 구해봅니다.
5. Ymin, Ymax를 찾아 m과 M을 구합니다.
총평으로 기하에서 묵직함을 준 문항은 30번으로, 개인적으로 9월 시험지에서 가장 까다롭다고 느낀 문항이었습니다. 현장에서 불편하게 정의된 벡터의 연산을 적절히 평행이동, 분해함으로 이루는 자취를 그려내야 하기에 상당한 꼼꼼함을 요구한 문항이었습니다.
벡터의 연산만으로 변별력을 확보한 문항인 23.06.30이 생각나는 문항이었습니다.
28번의 경우 공간좌표와 구의 방정식 단원을 베이스로 하지만, 이는 기하 상황의 특수함을 더하기 위한 장치로 근본은 공간도형 실력을 묻고 있는 우수한 문항이었습니다.
오늘 하루도 모두들 수고하셨습니다 :)
긴 글 읽어주셔서 정말 감사드려요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
기출 얼추돌렿느데 이감하나볼까,,,,
-
국영수한과탐임 가격15000해드림
-
다 안다고 바로 문제 들어가기보다는 배경지식을 활용한 지문과 보기 읽기 해야 틀리지 않을 거 같음
-
여기서 잡히다가 왜 사동임?? 피동아닌가…
-
슈시붙어서 필요가 없다 ㅎ
-
뚜왕뚜왕 0
뚜왕뚜왕
-
결제를 11월1일까지한 상태였고 저는 결제일보다 일주일정도 전에(10월넷째주) 미리...
-
11덮 확통 0
난이도 어땟나요 33분썻고 30번 틀렷는데 평가원 기출보다 좀 어려운거같던데 맞나요…
-
미적분하면 공통 2
도움되나요?? 확통이나 기하랑 다르게 논리가 비슷해서 도움될 거 같긴 한데 어떨지...
-
기분좋은 점수로 시작하는 하루 문학이 평소보다 쉬워서 너무 좋았음 그리고 한줄평...
-
삼각함수 그래프 1
제가 풀면서 쓴 풀이인데 맞나요? 이상한점 있나요?
-
문학때문에 시간 계속 개박살나서 다 꼬이네
-
나온 거 있으면 아는사람? 요즘 사설 독서론 가끔씩 틀려서 슬프네 생각해보니...
-
춘매전 뭔가 0
느낌이온다 문실정 출제자분 말도 일리가 있다 드문 능동적 주체적 여성인물..
-
내 정신머리
-
관리를 평가할 때는 개인의 능력이 아닌 도덕성만을 고려해야 한다 왜 틀린 거예요?...
-
예열지문이랑 요약본 들고갈건데 각 교시 쉬는시간마다 볼 수 있나요? 한국사랑...
-
오르비 망했네 6
딥피드 딱 5개 뜨는 거 중에 4개가 애니프사에다 나머지 하나는 제목 상태가...
-
ㅗ 화작 2점 틀리는 사람을 뭐라고 불러요?
-
허락받는건가요?? 감독관한테
-
아 인생 8
-
1. 잠깐이라도 충분히 자며 에너지 충전하기 공부 슬럼프에 빠진 학생들은 지금까지...
-
바로 75점 떠버리네;;;
-
오느레 급씩 0
히히.. 마시게따
-
나만 어려웟나 ..
-
오바임뇨?? 걍 기출 더 보는게 낫나..
-
심찬우 나와서 노래부르고 춤 춤?
-
근처에서 혼밥 하실거임? 아님 콘섵만 보고가나
-
생글 첫강듣고 독재에서 숨죽여 울었던게 어끄제같은대 벌써 수능이 열손가락으로...
-
성적인 묘사도 많고 내용도 무겁고
-
문자가 안오는걸 보니 떨어진 것 같네요 그래도 멘탈은 안털렸으니까 더더욱 열심히하자 끝까지 파이팅
-
혜윰 시즌1 3
이거..답이 1번이라늨데 왜죠? ㅜ 하향식이 틀린거아닌거 아님?? 당연히...
-
메모하면서 지문 푸나요 아니면 밑줄 치면서 푸나요 아니면 속발음하면서 푸나요
-
총정리과제 7 개밀렸는데 유기하고 8 집중적으로 파도 될까요? 아니면 무리해서라도...
-
EBS 만점마무리 봉투 모고 팩트로 어느정도 난이도임? 1
이번 종로도 87이고 계속 사설에서 2 후반에 서식중인데 이건 하나밖에 안틀렸더라...
-
오늘은 공부 슬럼프와 관련된 글을 한 번 써볼까합니다. 슬럼프란 무엇일까요? 보통...
-
큰거 한번 싸면 보통 2~3일뒤에 신호가 오는데 수능 전전날 변비약 먹고 수능 전날...
-
요새 사회 쉽게 나와서 약간 중요성이 떨어진 감도 있는데 이감 풀어보신 분들 사회는...
-
예전에 믿문이 되게 별로였었고 오르비 여론도 썩 좋은편은 아니라 안듣고있었는데......
-
국수영 점수 왔다갔다 거리는게 너무 불안하고 슬픔
-
국어 독서론까지 다 풀면 배가 ㅈㄴ 아프지 에반데 긴장되는건 아닌데
-
저는 물투화투 선택했습니다
-
연계 공부안하뮤ㅠ 13
연계 공부 1도 안했는데 괜찮나요 현대시2번 읽고 고전소설 인물관계도만 외우고...
-
뭐 살까요? 막판 하나 풀려는데
-
문학 어려워용 현대시에서만 3개틀림...
-
쉽지 않아요. 시간 재니깐 67분 걸림 (ㅈ됨) 여기서는 그냥 스포니깐 넘어가실...
-
이정재, 래몽래인 경영권 분쟁에서 승리…정우성과 이사회 입성 1
임시주총서 이정재 측 안건 모두 가결 드라마 재벌집 막내아들, 성균관스캔들 등의...
-
나만그래?
반가워요!!
공통에서 한두개만 어려웠으면 30번도 정답률 내려갔을 듯요.
그러게요.. 30번 연산과정이 길어서 시간이 촉박하면 답 내기 어려웠을것 같아요
고마워요 :)
감사합니다:)
올해 하시나요?
기벡은 언제봐도 재밋음
カッコいい
2629가어려운이차곡선허수라울엇어
근데 23.06.22는 공통아닌가요..?
기하고트님
기하 질문이 있습니다.
ㄱ. 벡터 A = m 벡터B + n 벡터C m+n의 값을 구하시오,,
위 문제는 저는 벡터분해 문제라 하는데요,
ebs에 널렸고
교과서에도 실렷고
역대 30여년 평가원 역사에 단 1번도 나온적이 없습니다.
(오직 역연산만 나옵니다. 보통 합벡터 문제라하는,, 22수 29, 23수 29 )
아예 안나오는 이유가 뭐라고 생각하시나요?
ㄴ.
함수식 → 그래프 작도의 경우는
함수식을 조작하지 않기 때문에 그래프가 오직 한가지만 그려지는데,,
'벡터방정식' → 기하로 작도함에 있어서,,,
벡터식을 건들기 때문에 ( 분해, 분점 등등 )
최종도형은 식을 어떻게 조작하든 같은 도형이긴한데
같은 도형이지만,,,
구도가 달라져 기하적 특징(닮음, 직각 등등) 이
잘보이느냐 안보이느냐에 차이가 생깁니다.
정리하면,
식조작에 따른 작도함에 있어서 ,
기하적특징이 잘보이느냐 안보이느냐,,
원래 그런건가요. 저의 내공부족인가요
추가로 25기하 출전하시는지요
ㄱ. 평가원에 출제되지 않았다는건 저도 처음 알았네요.. 제가 평가원의 의도를 파악한다는것은 주제 넘는 일인듯 하고.. 다만 쌓아온 경험에 기반해 추측해보자면, (ㄱ)이 묻고자 하는 건 B, C벡터를 적절히 연산해서 A벡터를 만드는 상수를 찾아주세요..! 라는 건데 이는 벡터의 연산 (뻴셈, 덧셈)의 기하적 해석이나 그 벡터가 이루는 자취 추론 등에 비해 trivial 하고, 갖가지 교과외 풀이법 (사교좌표계, 시소)등이 끼어들 여지가 많은 유형이기에 중요한걸 중요하게 묻고자 하는게 아닐까.. 하는 생각이 드네요.
물론 사관학교와 교육청에서는 종종 보았던 기억이 나고, 당장 11월 수능 27번에 끼어있어도 어색함이 전혀 없는 유형이기에 학습해두는것이 중요하다고 생각합니다 :)
ㄴ. f(x)=x^3-3x^2+1을 그려야 할때, 미분후 극점을 찾아 극값을 구하고 증감을 판단해 그리는 루트와
적절한 식조작으로 x^2(x-3)+1로 보고 원점에서 중근 x=3에서 실근을 가지는 3차함수를 y기준 +1 평행이동하여 그리는 루트는 확실히 차이가 날 수밖에 없습니다.
이는 기하에도 마찬가지로, 주어진 벡터식을 어떻게 하면 예쁘게 쪼개거나 합칠 수 있을지를 수2 그래프 작도처럼 경험에 기반한 루트에 따라 차이가 날수밖에 없다고 생각합니다. :D
기하의 신
すごいじゃん!
안녕하세요
7월에 기하 시작해서 시발점, 뉴런, 기출밖에 못 했고 이번 9평 30번 하나 틀려서 96점입니다
혹시 기하n제 딱 한 권만 풀 수 있다면
어떤 거 추천하시나요??