[칼럼] 머리 좋은 학생들이 수포자가 되는 메커니즘
안녕하세요. 어수강 박사(과천 "어수강 수학" 원장)입니다.
오늘은 수학에 재능 있는, 똑똑한 학생들이 수포자가 되는 메커니즘에 대해 포스팅 하도록 하겠습니다.
블로그 : https://blog.naver.com/math-fish 에서 더 많은 칼럼을 보실 수 있습니다 :)
1. 해당 학년에서 높은 성취를 보인다.
: 수학에 재능이 있으니 해당 학년에서 높은 성취를 보이는 것은 당연합니다.
2. 선행 및 심화 학습을 시작한다.
: 성취도가 높기 때문에 선행 및 심화 학습을 시작합니다. 이때, 대부분의 경우, 개념(정의, 정리)을 온전하게 자기 것으로 만들지 못한 상태에서 문제풀이를 하게 됩니다. 아이 스스로 배운 것에 근거해서 문제를 분석하고, 논리적으로 사고할 수 없는 상황에서 많은 문제를 빨리 풀어야 하기 때문에
"선생님이 알려준 방법을 '고민' 없이 따라 푸는 방식"
으로 공부합니다.
3. 선행 및 심화이 진행되면서 한계에 부딪힌다.
: 수학에 재능이 있기 때문에 1-2년 선행 및 심화 학습에서도 "정답률"이 나쁘지 않습니다. 따라서 "표면적"으로는 별 문제가 없는 것처럼 보입니다. 하지만 "선생님이 알려준 방법을 고민 없이 따라 푸는 방식"으로 "답을 맞히는데 초점"을 맞추고 공부하는 과정에서 기초가 쌓이지 않기 때문에, 조금 더 높은 단계로 나아가면 한계에 부딪히게 됩니다.
예를 들어 보겠습니다!
위의 예제는 시쳇말로 "노가다"를 통해 해결이 가능합니다. 8차식을 3차식으로 나눗셈을 해도 답을 구할 수 있기 때문입니다. 대부분의 경우 "노가다"를 통해 답을 맞히면, 뒤도 돌아보지 않고 다음으로 넘어갑니다. 하지만 "노가다"를 통해 위 문제를 해결하는 것이 고등수학에서의 학습 목표일까요? 이 과정에서 무엇을 배울 수 있을까요? 아무것도 배우지 못할 것입니다.
중요한 것은 얼마나 빨리 많이 했는지가 아니라, 얼마나 많이 배웠는지 입니다.
저는 위 문제를 배운 것에 근거해서 "4가지 이상"의 다양한 방법으로 풉니다. 그중에서도 가장 중요한 두 가지를 간단히 소개하면 다음과 같습니다.
풀이1. x의 네제곱을 3차식으로 나눈 나머지를 구한 뒤에, x의 여덟제곱=(x의 네제곱)의 제곱임을 이용한다.
: 차수가 높은 것을 낮은 것을 이용해서 나타냄으로써 문제를 해결합니다.
풀이2. 조립제법을 이용한다.
: 주어진 3차식을 1차식 3개의 곱으로 인수분해 할 수 있음을 이용한 풀이입니다. 이 또한 차수가 높은 것을 낮은 것을 이용해 나타냄으로써 문제를 해결하는 것입니다. (단지, "조립제법을 써서 쉽게 풀 수 있다!"가 아니라, 이 문제에서 어떻게 조립제법을 생각해 냈는지, 조립제법을 써서 풀어도 되는 근거는 무엇인지, 등등에 대해 생각해 보아야 합니다!)
차수가 높은 식의 차수를 낮추는 것, 문자 수가 많은 식의 문자 수를 줄이는 것, 항의 수가 많은 식의 항의 수를 줄이는 것은 수학의 전 분야에서 매우 중요한 학습 목표입니다. 하지만 대부분의 학생들이 이를 알지 못한 채로, 기계적으로 답을 맞히는 공부를 합니다. 때문에 기초가 쌓이지 않습니다.
재능이 있으면 1-2년의 선행에서는 "높은 정답률"을 보이기 때문에 기초가 쌓이지 않고 있다는 것을 눈치채지 못합니다. 하지만 (기초가 쌓이지 않기 때문에) 재능을 넘어서는 수준에 도달하게 되면 일시에 무너지게 됩니다.
고1 과정에서는 그럭저럭 잘 했는데, 고2 과정에서 급격히 무너진다거나, 고2 과정까지는 잘 버텼는데 고3 과정에서 급격히 무너지는 경우나 기본문제나 유제에서는 정답률이 70-80% 이상이었다가 연습문제에서 50% 이하로 떨어지는 경우가 대부분 이에 해당합니다.
4. 한계에 부딪히면 다시 앞의 과정으로 돌아가서 반복하다가 결국 수포자가 된다.
: 대부분의 학생들은 벽에 부딪히면 다시 앞의 과정으로 돌아갑니다. 하지만 똑같은 방법으로 단지 한 번 더 공부한다고 해서 기초가 쌓이고 문제가 해결되는 것은 아닙니다.
한계에 부딪혔던 방법으로, 단순히 몇 번 더 반복했다고 해서 실력이 쌓이지는 않습니다. 대부분의 경우, 이와 같은 과정을 수차례 반복한다고 해도, (근본적인 변화가 없다면) 한계에 부딪혔던 곳에서 또 다시 한계에 부딪히고 맙니다.
지난하고 어려운 과정을 참고 수차례 반복했음에도 불구하고, 나아질 희망이 보이기는커녕 학년이 올라갈수록 성적이 떨어지는 상황에서 하나둘씩 수학을 포기하게 됩니다.
수학에 재능이 있는 학생의 경우, 생각나는 데로 문제를 풀어도 답을 맞히는 경우가 많습니다. 배운 것에 근거해서 문제를 분석하지 않고도 답을 잘 맞히는 것이 좋아보일 수도 있지만, 이렇게 공부하면 기초가 쌓이지 않습니다. 그리고 기초를 쌓지 못하면 결국 재능을 넘어서는 수준에서 일시에 무너지게 됩니다. 높이 올라가서 무너지면 고통은 두 배, 세 배가 됩니다.
재능은 양날의 검입니다. 재능이 뛰어난 데도 불구하고, 위와 같은 이유로 재능 때문에 기초를 쌓지 못하면 재능을 넘어서는 수준에서 일시에 무너지는 경우가 무척 많습니다. (이와 같은 경우는 하나고에도, 서울과학고에도, 대학과 대학원에도 무척 많습니다.)
중요한 것은 답을 맞히는 것이 아니라, 개념(정의, 정리)를 온전히 이해하고, 이를 바탕으로 문제를 분석하고, 논리적으로 사고하는 연습을 하는 것입니다. 선행이나 심화를 하지 말라는 것이 아닙니다. 단지, 무조건 빨리 많이 하는 것보다, 조금 속도를 늦추고, 조금 적게 풀더라도 하나하나 온전하게 자기 것으로 만들며 기초를 다지고 실력을 쌓아나가는 방식으로 공부할 것을 권장하는 것입니다.
조금이나마 도움이 되었으면 좋겠네요! 다음에 또 만나요^^
1. 전자책 "수학을 망치는 N가지 이유" : https://docs.orbi.kr/docs/11802/
2. 전자책 "서울대 박사가 알려주는 수학의 비밀" : https://docs.orbi.kr/docs/11799/
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지문마다 거의 2개씩 박았네 수능날 법•경제 ㄹㅇ 개박을거같은데
-
반 애들이야 최저 낮거나 하면 조금 시끄러울 수 있다고는 생각하는데 공부 하고...
-
'인간은 다른 모든 생명체 보다 본질적으로 우월하지 않다.' 라고 했을때 싱어가...
-
국영실모 하나씩 풀었으면 다했다 실기나 연습하러가야지
-
말로만 수학 5등급이라는데 (정확한 수학실력은 모름) 수학 상이랑 하도 하라는게...
-
71점 맞았는데 독서론 -1 독서 -5 문학 -6 언매 -1 .. 수능때 이거하고...
-
수능 하루전에 더데유데 한회차가 남았는데 그걸풀까요? 아니면 기출을 다시 좀...
-
올해 6,9 평 제시문을 유심하게 봐라 2023학년도 수능 2번 문제 “명예를...
-
세개 다 어려웠나요 아님 문학 언매만? 화작은 몰라서.. 현장에서 어떻게 읽었었는지...
-
가나형 없어지고나서 통합수능? 이후로 생윤 등급컷은 어떤 편인가요 1컷이 50인적이...
-
독립시행이라 다시봐도 의미없으려나….
-
다 던지고 자연 속에 파묻혀서 살고 싶다
-
21시에 제가 작년에 가져갔던 예열 지문들 올려드릴게요 0
국어/수학/영어 올려드릴게요~ 월요일 파이팅~!~!~!~!~
-
가채점표로 부모님이 채점하시게 하기..
-
화작이 불안하니까 차라리 언매할까 싶다가도 언매해도 불안하니까 걍 수능 탈출해야지 빨리
-
보통 뭐가 더 어렵죠
-
뭐 푸는거 추천하시나요?
-
이런 나 제법 깔끔해요
-
위 그림처럼, 원래는 역함수가 없는데 강제로 y=x 대칭시킨 도형을 적분할 때...
-
1-2 79점 2컷이네...언매 8점 날린게 크다
-
님들 6
교육과정 찾아보는데 이건뭐임?ㅋㅋㅋ
-
그냥 나무위키나 볼까 ㅋㅋㅋㅋ 뇌에 더 잘들어오는 느낌..
-
아ㅏㅏ c언어듣는중 과제 평가 받는 중
-
다수의 정의감이 지배하는 사회는 무조건 민주주의 사회인가요? 아님그냥 적정수준의...
-
개념을 까먹은건가 평가원은 이렇게까지 안틀리는데
-
현역 국어 마지막 실모 2개 추천 부탁드립니다 형님들.. 1
첫수능 3일을 앞두고있는 어린양에게 투표 한번씩만 부탁드립니다ㅣ.....
-
못참겠다 1
야인시대 정주행 간드아악
-
올려드립니다. 예열지문의 경우 수능 당일 아침에 푸시는 걸 권해드리고, 그와 별개로...
-
진짜 9
수능은 진짜 아무리 늦게까지 보러가도 27수능 안에 끝내야겠다 28에 개편되네
-
죄송해요 전역하고 1년 더 할 것 같아요ㅠㅠㅠ
-
해줄 말이나..? 여러분 같으면 과외샘이 뭐 해주면 좋을 것 같나요 일단 수업은...
-
고백공격 할사람도 없음 ㅅ1ㅂ 경쟁자 제거용 고백공격 나도 해보고 싶다
-
바이섹슈얼 선언하고 나도 리트 칠 때 남녀 상관없이 고백 공격으로 상위권 표본제거해볼까.
-
퀄리티가 좀 안좋다는 평이 많아서 풀기 좀 꺼려지네요,특히 탐구 그래도 봐야할까요 ?
-
독서지문이 어려운편은 아니었지만 그렇다고 해도 전체적인 난이도가 1컷 94정도까지는...
-
사설 국어 등급 2
사설 1~2 진동하면 평가원 2는 안정으로 뜰까요?
-
설맞이 모의고사 0
쉬운편이에요?
-
91점 (독서0틀 문학 3틀 언어1틀) 역대 커하 나와서 엄마한테 자랑했는데 작년에...
-
오직 수미잡
-
개어려운것같은데 맞나요? 문학 다맞긴 했는데 모호했던 문제 서너개를 감으로 풀어서...
-
이감 0
서버 관리좀 해라
-
점수에 연연햘 필요가 없을거 같은데 퀄리티 조절 실패하는 경우가 많아서
-
수능 4일전에 9
손절할려고햇던 남성한테 고백공격 받아서 화나서 미칠거같고 멘탈 개털렷는어떡해요...
-
수요일 실모 1
수요일에 국어 수학 영어 실모 푸는거 어케생각하시나요 사둔 실모가 다 1회차씩 남아서..
-
머풀가요
-
5번에 5번선지 유사성 유무가 아니라 정도 아님? 6번에 3번선지 사람만이...
-
현돌에서는 자연 상태의 인간이 행위의 선악에 대한 판단자라고 하고 임정환 리트...
-
이감 6-10 2
독서론 언매 틀이랑 독서 문학 틀 갯수 비슷함 벽보고 반성하러 갈게요
-
수능장까지 어머니가 라이딩해주셨는데 당시 살짝 정신이 나가있던 나는 “엄마 나...
-
이감 개 ㅈ망함 2
난 퀄 좋은지 잘 모르겟어
첫번째 댓글의 주인공이 되어보세요.