[박재우] 안녕하세요 ^^
오르비 회원 여러분 오랜만입니다.
오르비 클래스 수학강사 박재웁니다.
더위가 가고 기분이 좋아질 것 같은데 곧 9월이네요.
수험생들은 시험이 현실로 느껴지기 시작하는 달입니다.
머 9평이 있어서가 아니구요. 그건 그냥 실전 연습이라고 생각하세요.
원서를 쓰게 되는 달이죠.
이게 말입니다. 원서를 쓰게 되면 기분이 묘해지고 바빠지게 됩니다.
이 것이 모든 컨디션이나 일정이 잘 관리되다가 흔들리게 되는 시발점이 되기도 합니다.
언제나 꾸준히 변함없이 앞만보고 가시기 바랍니다.
하고자 하는 사람은 못 할게 없다는 거 잘 아시죠 ?
저도 개인적으로 먼가를 이루기 위해 많은 준비를 하고 있습니다.
에너지도 많이 되찾고
꽤나 희망적입니다. 저 개인적으로는요 ㅎㅎ
오늘은 미루어 놓았던 칼럼을 하나 쓸려고 합니다.
공부하다가 지친 머리를 식혀 보시기 바랍니다.
물론 더 뜨거워지는 분들도 있겠지만요. ㅋ
저번 칼럼 처럼 이미지도 부가해서 쓰겠습니다.
수학이나 물리같은 과목들은 어떠한 공식이 있을 때 그 구조를 유심히 들여다 보는
습관이 매우 중요합니다.
대부분의 학생들은 미적분으로부터 왔다고들 얘기할 겁니다.
아닌가요 ? ㅋㅋ
그렇다면 미적분 이전까지의 사람들은 어떻게 이 공식을 얻어냈을까요 ?
특별히 천년전의 초기 그리스나 이집트 기하학자들은 어떻게 ?
수학자들의 역사들을 보다보면 재미있고 유용한 발견들을 볼 수 있습니다.
이제 이 공식을 얻게 되는 한가지 방법을 소개할 까 합니다.
비록 이 방법이 처음이라고는 볼 수는 없겠지만 다른 여타 흥미로운 것들 못지않게
좋은 방법이라고 생각합니다.
먼저 원리하나 소개할께요.
* Cavalieri의 원리 *
같은 높이를 갖고 각 높이에서 단면적이 같은 두 물체의 부피는 같다.
이 원리를 이해하기 위해서 매우 큰 두 입체 (피라미드 같은)를 생각해 보시기 바랍니다.
각 높이에 대해 들어가 있는 가로세로높이 모두 1짜리인 벽돌들을 생각해보시면
모양이 서로 다르더라도 같은 개수가 사용되어 졌다고 할 때 전체 부피는 당연히 같겠죠 ?
당연 빈 공간이 없이 채워진 상태겠지요.
이제 구의 부피를 얻기 위해 이 원리를 적용해 보겠습니다.
먼저 두개의 입체를 생각해 볼텐데요
반지름이 r인 구 S와 높이가 2r이고 밑면의 반지름이 r인 직원기둥에서
위 아래 두 개의 대칭 원뿔을
뺀 도형 두 개를 생각해볼께요
그림이 엉망이지만 그려서 한 번 보겠습니다.
여기에 이제 카발리에리의 원리를 적용해 보겠습니다.
같은 높이에서의 단면적이 같고 동일한 높이를 갖는 입체이므로
두 입체의 부피는 같습니다.
오른쪽 도형의 부피는 직원기둥에서 두 원뿔의 부피를 뺀 것이므로
그래서 구의 부피가 저렇게 나온다는 것을 알 수 있습니다.
모양과는 무관하게 각자 생각을 독창적으로 할 수 있다는 게 중요합니다.
이해가 좀 되셨는 지요.
그런데 사실 이 원리는 이러한 특수한 형태의 입체의 부피를 구하는 것 뿐만아니라
평면 상의 특정한 영역의 면적을 구하는 데도 사용되어질 수 있답니다.
단면적이 A이고 높이가 1인 기둥의 부피는 A 그러니까 단면적과 같습니다.
물리에서 이런 경우를 많이 적용하는 것을 아는 분들도 많이 계실겁니다.
암튼 이런 방법을 이용하여 면적을 한 번 구해보겠습니다.
물론 미적분을 알고 있다면 쉽게 얻을 수 있겠죠.
미적분 없이 설명은 그럼 어떻게 할 수 있을까요
오른쪽 그림의 꼭지점 표현이 원점에 있는 것 처럼 오해의 여지가 있어서
아래쪽에 다시 그려 놓았습니다.
이해 되셨나요 ?
왼쪽과 오른쪽은 두 입체의 동일 높이에 해당하는 x축의 좌표에서
동일한 단면적을 갖습니다.
피라미드가 되는 것은 x좌표와 y 좌표가 (c, c/2) 로 바뀌어서
직선이 되는 것은 아실겁니다.
그래서 두 입체의 부피는 같고 오른 쪽의 피라미드의 부피랑 비교하면
이때 왼쪽 입체의 밑면적을 xy평면으로 다시 생각한겁니다.
도형의 모양과는 관계없이 생각해 낼 수 있다는 것, 그러니까 쉬운걸로 바꿀 수 있다는
것이 강점입니다.
요즘은 정사영 이면각이 잘 안나오는 추세지만
예전에 이런 문제가 나온적이 있었죠.
기억니시나요 ?
어때요 ? 적용 가능하시나요 ^^
열공하고 좋은 결과 꼭 있길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지자체장은 조례 편성만 하고 지방의회 심의 의결 확정 다 함? 0
그럼 규칙은?
-
내년수능보는데도 실감이 안나는데 올해 보시는 분들은 얼마나 마음이 엉망잔칭하실지.. 다들 파이팅해요
-
또 짝수일까 0
19 짝 20 짝 21 짝 23 짝 24 짝 25....?
-
불법시위를 마치 6월항쟁 ,5.18 민주화 운동 으로 비유하는 년들이 있음 시위는 대학생들의 낭만
-
진짜올해는 1
논술4합5도 못맞출거같음
-
과잠 뒤에 SPEC이라고 써있던데 어느 대학임?
-
낼 학교언제가지 0
점심시간에 행정실문닫나요
-
재수때는 물2지2의 전사가 되야지
-
제발가까이제발가까이제발가까이제발가까이
-
분명히 저번주에 실모 80중후반왔다갔다했는데 갑자기 80초반으로 떨어짐 ㅅㅂ
-
그냥 후회없는 1년을 보낸 것 같음 빨리 끝내고파...
-
이비에스 수학 0
문제조건에서 fx 2차항이라면서 해설지엔 왜 3차항으로 써놓노;
-
과탐 0
진짜 개망했다 실모 안풀린다ㅜ생2 PCR 이랑 반보존적 복제 안나우ㅏㅆ으면
-
이거 가능한거임? 확률 얼마나 됨 주변 고등학교 많긴 함
-
차이 큰가요?? 수능문제가 훨씬 깔끔한지
-
공과계열 학과에 가려고 하는데, 학생부교과 학교장추천전형에선 가장 높게 나온 과목...
-
쌍사가 없어...
-
대충 유튜브,인스타 등 거대 sns에 나라가 직접 공익광고를 연출하면 됌. 전국...
-
저는 2
2일후 예비 중앙대생이 된다 이글은 성지가 된다 수고
-
흐흐..
-
재수때도 긴장 크게 안했는데 지금은 어제부터 개떨려서 이젠 심장 아픔;
-
민철햄 인스타 댓글로 드립친 거 밖에 없는데 차단당함 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ ㅜㅜㅜ
-
이번엔 1번이다.
-
걍 샤프심만 따로 들고가기 뭐해서 필통체로 들고가려는데 그냥 상관없는거 맞음?...
-
쌍지 노벤디 9
이기상 쌤 강의 이것이 개념이다만 인강으로 듣고 나머진 수특.수완.기출로 커버 가능할까요?
-
뭐임 그냥 꿀꺼억하면 되는건가
-
여러분 모두 원하는것보다 더 좋은 성적 받으시길 기원합니다
-
나 갑자기 모르겠어
-
22,24화작 엄청 어려웠다는데 어떤 식으로 어려운거임? 느낌이 궁금하네
-
깔끔하고 근거 명확하면서 새로운 논리를 요구하는 선지들로 뇌가 정화될 것 수능 전...
-
무등비 무한의 미분불가능(190621) 기울기함수
-
너무 긴장된다
-
KBS로 1~2달 전 쯤에 강의만 들었었는데 낼 또 들어야할까요? 너무 길어서...
-
제 아이디 입력해주시면 추천해주신 분과 제게 모두 만원권이 증정된다고 합니당 아이디...
-
9모가 너무 쉬운 나머지 단순한 이벤트였던건지 아니면 진짜 표본이 노답이 되버린건지...
-
환율봐라 0
달러 딸깍
-
21 22 28 30틀 84점.. 전반적으로 빡빡하진 않음 근데 계산량 많고 발상...
-
수시 최저 맞추면 되는데 최저 충족 여부 몰라서 쫄리긴 하겠지만 진짜 9모 급 물이...
-
교육과정 바뀐 21부터 반복되는 wwe임
-
내일계획 0
7 30 8 10 총정리과제 DAY4 조금남은부분으로 예열 8 40 10 30 이감...
-
ㅈㄱㄴ
-
23처럼 나오면 걍 혀깨물고 뒤질란다
-
“모든 이익 관심은 동등한 대우를 받아야 한다”가 싱어의 입장으로 맞는건가요?...
-
실수만 안하면 5
원하는 대학 가는 건데... 제발 실수야 저리가라
-
https://youtu.be/szxM38PsbDw?si=LG0XNh3cs2_XGbA...
-
고전소설 현대소설은 최근에 1회독 끝냈는데 고전시가 현대시가는 몇달전에 1회독한거라...
-
ㄹㅇㅋㅋ
-
아마가미씨네 어쩌구 이번 분기 애니인데 3등분의 신부느낌?
-
기출 뭐 풀까요 예전에 다 풀긴했고 작수도 풀었어요 10모 86 작수 84인데...
-
도 있을까요? 당연히 끄고 낼건데 혹시 해서
아 국어5등급 이해안된다 ㅅㅂ...
요약좀
한줄로 요약하면
이것도 이해 안 가면 뒤지렴^^
이라고 써있어요
ㅇㄷ
닉값
아싸 내일 태풍오는데
그 지구과학하는 애들은 "태풍의 눈" 무조건알지......?
(아! 물론 생명 화학 물리 하는애들은 그냥 배우지 않아도 앎 ㅇㅇ)
거기 한번 뛰어 갔다 와볼께
진짜 거기는 바람 안부는지 확인하구 태풍의 눈 지나가고 바람에 휩쓸려 한번 뒤져봄 ㅇㅇ
보이려나 모르겠는 데 박재우선생님의 애제자 ㅊㄱ가 쉽게 설명해드릴게요
철구요?
2
안보일까바
굿굿 ^^
쌤 이루하에서 뵐때마다 인사하고싶은데 소심해서 못하겠어요ㅎㅎ 실물이 훨씬 나으신듯...?
그냥 인사해요 ^^
닉값굳굳
멋져유