(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ 1
오랜만입니다그런대이제인증을곁들인
-
ㅇㅈ 0
사실 그런 건 없고 제가 좋아하는 민지 짤 보고 가세요
-
거기 지나가는 당신! 16
여캐일러 하나 주고 가요
-
그것은 바로 주식 안 하기! 주식 하는 사람들이 돈을 잃기에 나는 가만히 있으면...
-
알게모르게 고충이 있음 거기에 egg까지 크면..ㅅㅂ
-
미~적백미적백
-
젬마쌤 ㅎㅎ
-
쪼끄매서 귀여움
-
ㅇㅈ 14
숏충이의말로ㅇㅈ
-
물2 어카디 1
현역이고 물1베이스 나름 있는데 1) 물2 과외받으면서 전적 의존(나름 고수에...
-
욕하고는싶었는데 대댓달려서 박제당할용기는없는거임?
-
아니나성희롱당한것같음 10
여행중길거리를지나가다가가게아저씨가컴인싸이드라고했는데 이거이상한뜻맞죠어떻게이런말을할수가있죠?????
-
중앙대논술 1
중앙대 논술 기하 확통 비중 큰가요? 논술 준비 하나도안돼있고 최저만 맞췄고...
-
궁금
-
ㅈㄱㄴ
-
표본 들어오기 전보다 칸수 올랐나요
-
냥대생들 컴온 2
한양여대 애들 생과대까지 굳이.. 꾸역꾸역 등산해서 배달 쓰레기 그냥 버리고 가던데...
-
아이고야.. 0
내일 학원이 있었구나.. 일찍 일어나야 하는데 음 내일의 내가 해결해 줄 거야
-
쳐띄우는 거임 진짜 꼴도 보기 싫은데 경기 할 때마다 봐 진짜
-
ㅇㅈ 6
부끄럽네
-
자야지 자아지 자지 ㅗㅜㅑ
-
“이건 소름이 돋는다” 섬뜩한 여성 정체…알고보니 ‘아연실색’ 1
영상 생성 AI로 만든 영상 [출처 오픈AI] [헤럴드경제= 박영훈 기자] “소름이...
-
자야지 3
-
질문받겠습니다 22
안녕하세요
-
ㅇㅈ 6
수능보는주말에 핸드폰26시간함
-
그건 바로 흑인 프사의 "오.쓰.오.억"
-
수고했어 오늘도 6
-
육군 기행병 8
어떤가요?
-
공통수학인강이슬슬나오는걸보면기분이이상하다
-
스스로 총 쏴 얼굴 잃었던 美남성, 안면이식술로 새삶 2
미국에서 총으로 극단 선택을 시도해 얼굴이 손상됐던 남성이 안면 이식 수술을 받고...
-
ㅇㅈ 1
저랑 닮았네요..
-
ㅇㅈ 15
saint님.. 종목추천좀..
-
ㅇㅈ 0
진짜 너무 못생김.
-
아빠가 쓰던 아이패드 준다길래 원래 갖고있던 갤탭 동생주려는데
-
저 키 몇같음? 4
대부분 못맞추더라ㅋㅋ
-
모르는사람이없다랄까
-
메가 보니까 건대도 딸리는데 어디 써야할까요 ..
-
가대라고 정정하라고 개난리침
-
글리젠이 이래야지 ㅇㅇ
-
제곧내입니다
-
인증 했습니다 0
흐흐..
-
아이폰 아이패드 맥 사파리 연동이 잘 되어있어 끊김없이 즐길 수 있음
-
있는데 그 분은 재르비로 활동 중이라 말 안 할래요
-
잘될뻔한 여자들은 싹 다 20후반임 역시 와꾸가 최곤듯
-
생각보다사람들이 남얼굴에관심이많구나라고 생각했었어요
-
ㅇㅈ 4
하기엔 내가 너무 못 생김
-
스마일효정
-
뉴분감까지 끝내고 풀만항 수1 엔제
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다