20. 통계 문제 하나 풀고 가세요
ans.pdf
답은 첨부파일로 확인해주세요.
오르비 검색창 #제헌 으로 검색하시면
또다른 문제도 풀어 보실 수 있습니다. (현재 일부 문제는 복구중입니다.)
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8521290&showAll=true
-교재를 무료로 지원합니다. 위 링크의 내용을 확인해주세요.
-제헌이 모의고사 판매 링크
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고딩인데 당연히 고딩이랑 시귀고 싶지 ㅋㅋ
-
싫어요
-
어제는 많았잖아
-
이제 고3올라가는 고2입니다 내신을 버리고 정시를 준비중이라 겨울방학에...
-
독도는! 2
-
작년 이맘때에 올라온 글인데 기가 막히게 적중했네요;; 올해도 있으면 좋겟는데
-
왤케 턱턱 막히죠 자연이랑 아예 다르네
-
58kg임.. 11
실화냐..
-
화장도 안하는데 눈코입 다 쨍하고 얼굴 비율 그냥 고양이 ㄷㄷ이런 사람이랑...
-
탐구 하나 확정1인거 빼고 국어는 1점차로 2고 수학 메가2컷 부산교육청3 영어...
-
십덕의 오노추 1
https://www.youtube.com/watch?app=desktop&v=1RQ...
-
근데 눌러서 2번 봤더니 옯붕이더라...
-
난 오르비언들 사랑해 19
내가올해살아있을스있었던건 다너희들덕분이야 진짜로사랑해 진짜로...
-
경제 기출분석 1
' 한 100문제정도 기출문제 이런식으로 풀어서 과외생들 만들어줬었는데 오히려 제...
-
프사 ㅋㅋ
-
의대증원 정시 0
현재 확률뜨는건 의대증원 고려해서 내려간 입결 기준으로 뜨는건가요??
-
목이 아프군아 4
목캔디가 필요해
-
미적vs기하 과탐vs사탐 뭐 추천??
-
나를 허락해준 세상이란
-
아 진짜로 5
대학원 준비해볼까
-
집에 박혀있다 8
흐앗 너무커
-
1M 이상이면 음수 아니냐
-
가챠 타임은 언제나 도키도키! 그 결과는.....!! 카나!!! 사실 카나를 그리...
-
내오랜꿈
-
연고대 목표로 반수하려는데 미적에서 확통으로 바꾸는거 괜찮을까요 ㅠㅠ 공통 3틀에...
-
근데 돈 아껴야 해서 가기 싫음.. 결론: 돈 좀 주세요
-
반수 0
지방대 교과로 3.초반~중반 학과 미컴에서 명상가 인가경 사학이나 중어중문 반수는...
-
23수능이 마지막이었는데, 그때랑 많이 차이날까요?? 저는 고1수학 유기하고...
-
이런 게 히키코모리인 거죠? 생각보다 쉬운데
-
예뻤어밖에 몰랐는데 걍 다 좋네 대박
-
탐구 추천 좀 2
화1지1 했는데 화1 개같아서 버리고 지구깔고 나머지 하나 선택해야하는데 투과목이나...
-
집에있으니깐 5
3시간째오르비중
-
물2지2로 간다
-
정시 궁금한거 0
현강 들엇던 쌤이 의대 증원 때문에 컷이 올라간거지 빵꾸 난 학교들이 많을...
-
노래 추천좀요 6
부르기 쉬운걸로
-
생윤 1컷이 1
30점대가 아니라는거에서 고인물 많은거 증명이다... 진짜 3등급 안나오면 죽는다고오 제발 ㅠ
-
뿌지지지ㅣ
-
동사 2컷 1
43일 가능성은 전혀 없을까요…?
-
리젠이 넘 느려요..
-
24수능 제가 기억하기론 5틀 5등급 25수능 0틀인데 시간 20분잡아먹음......
-
재수할때 3
학교 걸어놓고 아예 처음부터 쭉 안가면 어케돼요?? 강제퇴학인가.. 학교는...
-
수능100점만 지원 가능? 화작97인데 강민철 박석준 둘 중 하나 넣을 것 같음
-
ㅈㄱㄴ
-
왜케 시작하기가 싫지
-
문과에도 영향있을까요?
-
한완수 미적 상하 해봤는데 도움 받기는했으나 솔직히 몰입이 잘 안 됨
-
블프인데 0
살게없네..근데도 뭐살지 고민하는것이 나란 인간
-
나지금이미지너무이상한듯뇨
-
내신을 ㅈㄴ 열심히 해도 5 뜸 이해를 한 것 같은데 시험만 보면 뭔지 모르겠어...
-
ㅈㄴ 별로네 좀 이쁘게 만들어주지
하아하아.. 1빠..ㅎㅎ
좋은문제 풀어볼게요!!
ㅎㅎ
좋어용 헝헝
감사용
감사요... 깔끔합니다
앞으론 더러운 문제좀 내야겠네요 ㅎㅎ
예?? ㅋㅋㅋ 아닙니다
*@}>->----
크..좋다
^^
항상 감사합니다ㅎ
우!
진!
충!
깜사합니다
*^^* ^_^&
문제 좋네요 ㅎ
감사하 합니다
감사합니당~~ 님모의고사오늘삿아요ㅎㅎ
^^
문제를 눈으로 풀어보는 것도 좋은 습관인가요? 항상 올려주시는 문제를 버스 안이나 자기전에 눈으로 풀어보고있어요 감사해요ㅎㅎ
시험장에선 그럼 안되겠지만... 평소에 그렇게 하면 시험장에서 도움 많이 될거같네요
걍 n1부터 다 넣어보면 되는건가요?
아니면 다른풀이가 있는건지..요?
몇개가 답이 될 지, 모르는 상황에서 그렇게 푸시면 안돼요.
위 문제는 n=2, 3, 4 였기 때문에 운이 좋았겠지만, 의도는
표준화+ 확률밀도함수의 대칭성을 이용하는 문제입니다.
표준화와 대칭성을 이용하면 어떻게 풀수있는건가요?
f(8)=0.24 이므로 g(n) ≥ 0.47인 n의 값을 찾으면 돼요.
g(n)=P(n-4 ≤ Z ≤ n-2)
이므로 n=2, 3, 4 입니다. 대칭성을 이용한다는 것은
n=2일 때, g(2)=P(-2 ≤ Z ≤ 0)
n=4일 때, g(4)=P(0 ≤ Z ≤ 2)
여기서 이용된 거구요
n을 하나하나 넣어서 풀었는데 맞는 건가얀?
몇개가 답이 될 지, 모르는 상황에서 그렇게 푸시면 안돼요.
위 문제는 n=2, 3, 4 였기 때문에 운이 좋았겠지만, 의도는
표준화+ 확률밀도함수의 대칭성을 이용하는 문제입니다.
예를들어, 답이 n=10, 11, 12였다면 푸는데 오래걸리셨을거에요 ㅎㅎ
문제 고퀄이네요ㅎㅎ
잘풀고갑니다.
^^&
이런형태 문제는 또 처음보는듯 ㅇㅅㅇ...
암튼 잘 풀고 갑니다 ㅎㅎ
^^& 2012 9평 형태 조금 바꿔본거에요
엌 기출공부 안한거 티냈네 ㅋㅋㅋ
죄송한데 ...
n이 2하고 4일때는 알겠는데 n이 3일때는 어떻게 되는건가요??
종모양의 대칭형태니까 확률이 0.47보다는 클거기 때문에 n=3도 답으로 골라줘야합니다.
확률 자체를 구하는 방법도 있긴 하죠 ㅎㅎ -1에서 1이니까 0.68 이겠네요.
위의 댓글에 g (n) 확인해보세용
크거나 같은건데 같다라고만 봣네요 감사합니다^^
g(n)≥0.47까지 구하고 표보고 바로 n=4 넣은다음 정규분포 그래프 그려서 대칭성 판별했는데 너무 직관적인가 ㅂㄷㅂㄷ
괜찮습니다.
스무스하네여
제헌님 n=1일 떄는 판별할 수 없지 않나요?
네??
g (n)>=0.47 에서요ㅎㅎn=1일때는 정확한값을 모르지않나요?
네 n=2 3 4 가 답이에요