[JYJ칼럼] 6월테제③ : 미분법이 강화된다① 역함수
벌써 세번째 칼럼입니다.
타이틀은 "미분법이 강화된다" 이고 그중 역함수의 미분법입니다.
제가 요즘 케치프레이즈처럼 외치고 다니는 말이 바로
"미분계수의 시대는 가고, 미분법의 시대가 왔다"
입니다. 출제범위의 성격에 따라 문제의 구성방식이 달라지리라는 예상입니다만
그렇다고 해도 미분의 정의에서부터 그래프의 활용에 이르기까지
미분이라는 전체 단윈에 대한 체계적 이해는 필수입니다.
다만, 무슨 일이든 디테일한 변화가 생각보다 우리에게 미치는 영향이
매우 클 때가 많으므로 함수나 관계를 유도하여 미분계수를 계산해내는
미분법 연습을 충실히 해 두는 계기가 되시면 좋겠습니다.
2016.05.13. 장영진 드림
*본 컬럼은 DESKTOP환경에 최적화 되었습니다.
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8371471
①:1테제> http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8380565
②:2테제> http://orbi.kr/0008400498
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고속 누백 라인 0
백분위합 밑이 누백인가요 아니면 표점합 밑이 누백인가요?? 그리고 저정도 누백이면...
-
션티vs이명학 0
대성패스 있고요 영어선생님 아직못고르고있는데 두 선생님분들 해석 스타일이 어떻게...
-
www.instagram.com/ijeoxen56/
-
권용기 한명만 들으려고 대성패스 결제할정도로 메리트가있나요?
-
공군: 복무 기간이 육군보다 3개월 더 기니까 3개월동안 후회함 육군:18개월동안 후회함
-
부대 수험표 0
부산대 수험표 거기서 뽑을 수 있나요? 집에 두고 옴;;;
-
1월 1일 지나도 졸업증명서 필요한가요 ㅠㅜ
-
학생증 ㅇㅈ 6
신학생증 너모 예쁘고… 이건 똥구데기 기존학생증ㅋ
-
진짜 개병신직장일수록 우리 직장에 ~대학 몇명있다 이딴 개소리 엄청 함 아니 시발...
-
얼버기 4
얼리버드 기상
-
주말 통삭제되는게 진짜 말이안됨
-
작년,재작년에 대강 예비 50번까지 돌았는데 올해 최저 3합7 생겨서 예비 덜...
-
요약 : 놔두면 어차피 죽는 6살 장중첩증 소장괴사 환자를 수술했으나 안타깝게...
-
세지1등급, 지구2등급 가능할까요? 세지는 1등급 뜬다하면 백분위 97 이상...
-
화작미적물1화1 91 98 1 77 70(메가기준) 인데요 ㅠㅠ 이대 컴공 논술...
-
사랑에빠짐
-
한줄요약 : 장이 썩어들어가 당장 죽기 직전인 신생아를 일반외과 의사가 수술해서...
-
이거 메가 경쟁자 대비 성적분포로 전체 채점결과를 알순없나? 3
본인 원점수를 조정하면 그 원점수에 따른 경쟁자의 성적분포가 나오는데 그럼 내...
-
언매, 미적의 메가스터디 채점자 평균치의 상대점수는 대략 비례하는 경향이 있음. 내...
-
그냥 따라하기만 함
-
어디가 더 좋을까요? (참고. 한양대 전기는 전자공학이 아님)
-
얼버기 5
죠은 아침
-
ㅈㄱㄴ
-
새벽감성노래 1
이미새벽은지나갔지만
-
뭔가 위에 대학 이름이랑 같이 붙어있으면 너무 위에 쏠려있는 느낌서울대나 경희대처럼...
-
기상 완료 알바 가기 시러
-
진짜 인재 놓친거다.
-
오르비 망했나
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 3
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 3
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 4
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 4
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
작년 수능 21번은
역함수의 미분법이라기 보단
곱의 미분법이 어울릴듯
역함수라는 발상자체가 어려웠던 문제..
저도 현장에서 역함수라고 생각도 못하고 그냥 음함수미분으로 했는데
끝나고보니 많은사람이 역함수로 풀었더라구요..놀랐음
맞습니다. 풀이과정 자체는 음함수 미분법이 더 간결합니다.
수능 21번의 f(t), g(t)와 같이 정의되지만 음함수 미분법으로 가면
더 돌아가야 하는 경우도 있기 때문에 역함수 미분법으로도
꼭 이해두시길 권합니다.
탑재해드린 23번은 그런 의도의 변형문제입니다.
칼럼감사합니다~~ 문제들 다 좋은거같아요...나오면 좋겠습니다 ㅠㅠ ㅎㅎ
문제까지 꼼꼼히 보셨다니 기쁘네요. 눈에 보이고 할 수 있는 일부터 하다 보면 좋은 결과들이 나오겠지요. 건투를 빌어요.
선생님 오늘 메가스터디 들어갔다가 맛보기 강의에 지금 칼럼의 문제들 해설이 있네요!! 정말 감사합니다ㅠ ㅠ ㅠ 조금 고민이 있던 문제가 있었는데 바로 해결됬습니다
감사합니다!!
도움이되었다니 기뻐요^^
문제들 정말 멋집니다. 대칭이동 해서 다시 그리지않고 y->x방향으로 그래프 자체로 바로 볼수있게 훈련시키는 문항들과 , 특히 20번 문제는 g''을 찾을때 보통 g'은 f'의 역수라는 기하학적 의미까지만 알고넘어가는데 "항등식"을 통해서 풀줄도 알아야한다는 칼럼내용을 토대로 g(f(x))=x에서부터 g''을 찾아냈네요 23번도 tan 역함수 (lnt)로 표현하는게 관건인듯하고 특히나 20번 문제는 정말 신선하네요 이 문항을 풀고나니 매개변수로 표현된 함수의 이계도함수도 건드리면 변별력이 상당하지않을까 하는 생각이 듭니다. 보통 dx/dt /dy/dt 까지만 알고 넘어가니까요 앞으로의 칼럼내용들도 기대되고 강의들도 기대됩니다
문제들의 구성을 저보다 더 명쾌하게 꿰뚫으셨네요. 말씀하신 매개변수표현의 이계도함수도 학생들의 약점입니다만 이번 6월테제엔 싣지 못했네요. 관심있게 지켜봐주셔서 감사하구요. 올한해 입시 승리로 이끌어가길 기원하겠습니다. 화이팅.
좋은글 감사합니다 문제도 잘풀고갑니다
도움되셨으면 좋겠네요. 앞으로도 많은 관심 부탁드립니다.
정말 명쾌한 해설 감사드립니다!!
많이 배우고 갑니다. 고맙습니다
해설까지 보신거 같아 더 좋네요. 남은 칼럼도 열심히 봐주세요. 감사해요
선생님 인강 잘듯고 있습니다ㅠㅠ
감사해요^^