[박수칠] 함수 f(x)g(x), f(x)/g(x)의 그래프 개형 (미적분2)
미적분2에서 미분법의 활용 단원의 문제들은
대부분 함수의 그래프와 연결됩니다.
특정 함수의 그래프 특성을 물어보는 문제도 있고,
접선 문제, 최대·최소 문제, 방정식·부등식 문제를 풀기 위해
그래프를 그려야하는 경우도 있습니다.
이를 위해 함수의 그래프 개형을 파악하려면
많은 요소들을 고려해야 합니다.
미적분1처럼 함수의 증가·감소와 극점 파악은 기본이요,
아래로 볼록·위로 볼록과 변곡점, 점근선까지 알아야 하죠.
특히 아래로 볼록·위로 볼록과 변곡점에 대한 조사는
이계도함수를 이용해야 하기 때문에 귀찮습니다.
그런데 도함수나 이계도함수를 이용하기 전에
함수식의 특성만으로 그래프 개형을 어느 정도 짐작할 수 있다면
그래프를 그리거나, 그래프 관련 문제를 풀 때 상당히 유리하겠죠.
이 글에서는 함수식이
f(x)g(x)의 꼴 또는 f(x)/g(x)의 꼴로 표현되는 함수에 대하여
도함수와 이계도함수를 거치지 않고 그래프 개형을 파악하는 법에 대해
얘기하고자 합니다.
도함수나 이계도함수를 이용하지 않고 그래프 개형을 파악하는 과정은
다음의 3단계로 이루어집니다.
(1)단계: 함수식으로부터 다음의 요소들을 조사
① 우함수, 기함수 같은 그래프의 대칭성
② 정의역과 x절편
③ y값의 부호
④ 점근선
(2)단계: (1)단계에서 찾은 각 요소들을 좌표평면에 표시
(3)단계: (2)단계에 표시된 요소들을 곡선으로 부드럽게 이어주기
이 과정을 제대로 이해하려면 예가 필요하겠죠?
(1)단계
① 그래프 대칭성 없음
② 정의역은 실수 전체의 집합, x절편은 0과 1
③ e^x > 0 이므로 y의 부호는 x(x-1)의 부호와 같음
구간 (-∞, 0)에서 y > 0, 구간 (0, 1)에서 y < 0, 구간 (1, ∞)에서 y > 0
④ x → -∞일 때 y → 0 이므로 x → -∞일 때 점근선 y = 0
x → ∞일 때 y → ∞ 이므로 x → ∞일 때 그래프가 오른쪽 위로 향함
(2)단계
x축 위에 x절편을 표시한 다음,
y의 부호에 맞춰 그래프가 지나는 모양을 표시
점근선의 위치도 y의 부호에 맞춰 표시
(3)단계
(2)단계에서 표시한 요소들을 곡선으로 부드럽게 이음
위 함수의 실제 그래프는 다음과 같습니다.
이 정도면 비슷하죠? ^^
계속해서 다른 예도 살펴봅시다.
(1)단계
① 그래프 대칭성 없음
② 정의역은 양의 실수 전체의 집합, x절편은 1과 2
③ (x-2)² ≥ 0 이므로 y의 부호는 lnx의 부호와 같음
구간 (0, 1)에서 y < 0, 구간 (1, 2), (2, ∞)에서 y > 0
④ x → 0+일 때 y → -∞이므로 점근선 x = 0
x → ∞일 때 y → ∞이므로 그래프가 오른쪽 위로 향함
(2), (3)단계
(함수식에 (x-2)²이 포함되어 있기 때문에
그래프가 x=2일 때 x축에 접함을 예상할 수 있음)
위 함수의 실제 그래프는 다음과 같습니다.
(1)단계
① 그래프 대칭성 없음
② 정의역은 0을 제외한 실수 전체의 집합, x절편은 1과 2
③ y의 부호는 x(x-1)(x-2)의 부호와 같음
구간 (-∞, 0)에서 y < 0, 구간 (0, 1)에서 y > 0,
구간 (1, 2)에서 y < 0, 구간 (2, ∞)에서 y > 0
④ x → -∞일 때 y → -∞이므로 그래프는 왼쪽 아래로 향함
x → ∞일 때 y → ∞이므로 그래프는 오른쪽 위로 향함
x → 0-일 때 y → -∞이므로 점근선 x=0
x → 0+일 때 y → ∞이므로 점근선 x=0
(분자 차수) ≥ (분모 차수)이므로 분자를 분모로 나누면
y = x -3 + 2/x 가 되고,
x → ±∞일 때 2/x → 0이므로 y ≒ x-3 으로 볼 수 있음
따라서 x → ±∞일 때 점근선 y = x-3
(2), (3)단계
위 함수의 실제 그래프는 다음과 같습니다.
(1)단계
① 그래프 대칭성 없음
② 정의역은 실수 전체의 집합, x절편은 1과 2
③ e^x > 0 이므로 y의 부호는 (x-1)(x-2)의 부호와 같음
구간 (-∞, 1)에서 y > 0, 구간 (1, 2)에서 y < 0, 구간 (2, ∞)에서 y > 0
④ x → -∞일 때 y → ∞이므로 그래프가 왼쪽 위로 향함
x → ∞일 때 y → 0이므로 점근선 y = 0
(2), (3)단계
위 함수의 실제 그래프는 다음과 같습니다.
(1)단계
① 그래프 대칭성 없음
② 정의역은 2를 제외한 양의 실수 전체의 집합, x절편은 1
③ y의 부호는 (x-2) lnx의 부호와 같음
구간 (0, 1)에서 y > 0, 구간 (1, 2)에서 y < 0, 구간 (2, ∞)에서 y > 0
④ x → 0+일 때 y → ∞이므로 점근선 x = 0
x → ∞일 때 y → 0이므로 y = 0
(2), (3)단계
위 함수의 실제 그래프는 다음과 같습니다.
(1)단계
① 그래프 대칭성 없음
② 정의역은 1을 제외한 양의 실수 전체의 집합, x절편은 2
③ y의 부호는 (x-2) lnx의 부호와 같음
구간 (0, 1)에서 y > 0, 구간 (1, 2)에서 y < 0, 구간 (2, ∞)에서 y > 0
④ x → 0+일 때 y → 0이므로 x → 0+일 때 그래프가 원점으로 향함
x → 1-일 때 y → ∞이므로 점근선 x = 1
x → 1+일 때 y → -∞이므로 점근선 x = 1
x → ∞일 때 y → ∞이므로 그래프가 오른쪽 위로 향함
(2), (3)단계
위 함수의 실제 그래프는 다음과 같습니다.
(구간 (0, 1)에 변곡점이 존재하지만 개형에서는 확인 불가능)
지금까지의 예를 보면 이 방법이 참 잘 통하는 것 같은데…
그럴싸한 함수만 예로 들어서 그런 것이지
절대 만능은 아닙니다.
그럼 어떤 함수가 잘 통하는가?
f(x)g(x), f(x)/g(x)의 꼴에서 f(x), g(x) 각각이
실수 범위에서 예쁘게 인수분해되는 다항함수
또는 간단한 지수함수, 로그함수여야 합니다.
여기에 맞지 않다면
증가·감소와 극점, 아래로 볼록·위로 볼록과 변곡점을
파악하기 위해 도함수, 이계도함수에 대한 조사가 필수입니다.
예를 들어 다항함수 부분이
실수 범위에서 인수분해되지 않으면
x절편과 점근선만으로 극점의 위치를 예상할 수 없습니다.
다음은 함수 의 그래프입니다.
이 함수의 분자 5x²+3x+1이 실수 범위에서 인수분해되지 않기 때문에
x절편, y의 부호, 점근선만으로 그래프 개형을 그린다면
극대, 극소가 나타나지 않습니다.
그러니 잘 활용하되, 맹신하지는 마세요~ ^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
[박수칠] 기하와 벡터 - 평행사변형을 이용한 벡터의 합 학습 자료 11
안녕하세요~ 박수칠입니다^^기하와 벡터 원고를 열심히 쓰는 중에 가끔씩 학습 자료를...
-
[박수칠] 기하와 벡터 - 벡터의 일차결합 학습 자료 19
안녕하세요~박수칠입니다^^1월보다더추운2월에건강하게잘지내고계신가요?얼마전부터박수칠수학...
-
[박수칠] 2017학년도 수능/모평 가형 기벡 문제 10선 6
안녕하세요?박수칠 수학 저자 박수칠입니다 ^^설 연휴가 지나가고, 벌써 2월이...
-
[박수칠] 2017학년도 수능/모평 나형 미적분1 문제 10선 5
안녕하세요?박수칠 수학 저자 박수칠입니다 ^^전에 올렸던 2017학년도 수능,...
-
[박수칠] 2017학년도 수능/모평 가형 미적분2 문제 10선 15
안녕하세요?박수칠 수학 저자 박수칠입니다 ^^얼마 전에 박수칠 수학-확률과 통계...
-
[홍보] 박수칠 수학-확률과 통계편이 나왔습니다. 25
의 저자 박수칠입니다. 오르비에 몇 달만에 글을 쓰네요 ^^ 오르비에서의...
-
[박수칠] 2017학년도 수능 9월 모평 나형 21번 풀이 10
9월 평가원 모의고사 어떠셨나요?저는 나형에서 21, 29, 30번만...
-
[박수칠] 2017학년도 수능 6평 수학 나형 30번 풀이 61
6평 나형을 이제야 풀어봤는데 오르비에 30번 해설이 없네요? 여기저기 해설 강의...
-
[박수칠] 2017학년도 수능 6평 수학 가형 30번 풀이 15
6평 잘 보셨나요? 생각보다 잘 봐서 만족스러운 분들도 있을 것이고, 그 동안...
-
[박수칠] 놓치기 쉬운 개념/유형 3가지 (3편) 35
6월 평가원 모의고사가 얼마 남지 않았습니다. 준비는 잘 하고 계신가요? ^^...
-
[박수칠] 귀납적으로 정의된 수열 문제에 대한 평가원, EBS 문의 결과 20
얼마 전에 귀납적으로 정의된 수열 문제에 대한 포스팅 (...
-
[박수칠] 귀납적으로 정의된 수열 문제… 수능에 어떻게 나올까? 36
저도 참 궁금합니다. 교과부 고시와 교과서를 바탕으로 학생들에게 ’귀납적으로 정의된...
-
때는 어제, 매우 즐거움에 목말라 보이는 박수칠 님께드라마(?) 비스무리한 것을...
-
안녕하세요? 좋은 글들이 참 많아서 도움이 많이 됩니다 1
여기에 글을 남겨도 될 지 모르겠네요자료들이 좋아서 출력해서 보고싶어 해보려고...
-
[박수칠] 확통 교재에 대한 의견을 듣고 싶습니다. 24
안녕하십니까! 박수칠입니다 ^^3월말부터 박수칠 수학-확률과 통계 집필을...
-
박수칠 선생님 3
문과 관련 책도 출판하시나요?
-
[박수칠] 증가상태, 감소상태라는 개념은 이제 버리세요~ 39
증가상태, 감소상태는 점에서 함수의 증가, 감소를 나타내는 개념이며, 대체로 다음과...
-
[박수칠] 놓치기 쉬운 개념/유형 3가지 (2편) 18
칼럼으로 들어가기 전에 자랑부터! 드디어 박수칠 수학 미적분1, 2 부교재 작업을...
-
[박수칠] 분산을 (편차)²의 평균으로 계산하는 이유 21
오늘은 어떤 주제로 글을 쓸까 고민하다가 예전에 봤던 조관 선생님의 포스팅 (...
-
[박수칠] 함수 f(x)g(x), f(x)/g(x)의 그래프 개형 (미적분2) 20
미적분2에서 미분법의 활용 단원의 문제들은 대부분 함수의 그래프와 연결됩니다. 특정...
-
[박수칠] 다항함수의 그래프와 직선이 만나는 모양 15
미적분1에서 배우는 미분법은 다항함수를 대상으로 하고 있습니다. 그 중에서도...
-
[박수칠] 곡선 밖의 점에서 그은 접선 문제 (feat. 변곡접선) 47
이 문제 아시죠? 기출 문제를 공부하다 보면 반드시 넘어야 할 산, 2014학년도...
-
수학 공부를 하다 보면 다양한 개념과 유형을 자신의 수준에 맞춰 이해하고, 나름의...
-
[박수칠] 표본분산을 계산할 때 n-1로 나누는 이유는? 42
2016학년도 수능에 적용되었던 2007 개정 교육과정에서 2017학년도 수능에...
-
안녕하세요~ 박수칠입니다 ^^ 지난 번에 올렸던 ’극대·극소의 새로운 정의...
-
처음에 정보가 부족해서 구매를 망설였지만!저같은 분들위해서 짧게나마 사진과 리뷰를...
-
2016학년도 수능에 적용되었던 2007 개정 교육과정에서 2017학년도 수능에...
-
[박수칠] 함수 y=f(x)와 역함수 y=g(x)의 교점 위치 111
오늘은 정말 오랜만에 수학 영역의 직접 출제 범위로 들어온 ‘역함수’ 얘길 해볼까...
-
[박수칠] 순열/조합 단원과 확률 단원에서 ‘경우의 수’ 세기 37
오르비언 여러분~ 새해 복 많이 받으세요! 다들 설 연휴는 무사히(?) 보내셨는지...
-
[박수칠] 상용로그의 지표와 가수, 수능에 나올까? 안나올까? 52
최근 오르비 수학 게시물을 보면 자주 올라오는 질문이 하나 있습니다. “개정수학에...
-
이번에 다룰 주제는카르다노의 공식(삼차방정식의 해법), 비네의 공식(피보나치 수열의...
-
미적분1에서 미분계수의 정의를 배우고, 간단한 예제를 풀고 나면다음과 같이...
-
[박수칠] 도형에 대한 삼각함수 극한 문제... 2017 수능에서는? 41
다들 알고 계시다시피 2017 수능에 처음으로 적용되는 2009 개정 교육과정에서는...
-
[박수칠] 우미분계수, 좌미분계수는 도함수의 우극한, 좌극한과 같은가? 45
오르비 수학 태그에 매년 보이는 주제인데 올해도 어김없이 등장했네요. 박수칠...
-
요새 놀 시간이 없음으로 음슴체 좀 쓰겠음 일단 본인 소개부터~ 본인은 박수칠...
-
[박수칠] 박수칠 수학에 대한 의견을 듣고 싶습니다. 10
안녕하십니까? ‘박수칠 수학’ 저자 박상칠이라고 합니다. ’박수칠 수학? 그런 책이...
-
[박수칠] 2015학년도 10월 학력평가 B형 21번, 30번 풀이 8
2015학년도 10월 학력평가 B형 21번, 30번 풀이입니다.먼저 21번정적분으로...
-
[박수칠] 2016학년도 포카칩 모의평가 예비시행 해설 8
지난 5월 4일에 포카칩님이 배포했던2016학년도 포카칩 모의평가 예비시행에 대한...
-
[박수칠] 수능특강(미통기 미분법)+기출문제 자료 13
2016학년도 수능 대비용 수능특강의미적분과 통계 기본 3강~5강 미분법에 대한...
-
[박수칠] 수학 B형 변별력 문제 풀려면 기본 개념/유형부터 다지세요~ 3
수학이 A형, B형으로 바뀐 2014학년도 수능부터 30번의 지수함수, 로그함수...
-
2016학년도 수능 대비용 수능특강의기하와 벡터 4강~6강 이차곡선에 대한 문제들을...
-
박수칠 수학 부교재 24
박수칠 수학 부교재 페이지가 다음과 같이...
-
[박수칠] 수능특강(수2 7강, 적통 2강)+기출문제 자료 2
2016학년도 수능 대비용 수능특강에 수록된 문제 가운데LEVEL 3의 문제들을...
-
[박수칠] 2015학년도 9월 모의평가 B형 시험지 풀이 스캔본 1
올해 두 번째이자, 수능 전 마지막 평가원 모의고사 잘들 보셨나요? 저도 시간...
-
[박수칠] 2015학년도 6월 모평 B형 28번, 30번 해설 24
오늘 6월 모평 잘 보셨나요?작년 6월 모평과 비슷한 수준인 것 같은데,포물선의...
-
수학영역 A형에 비해 B형에서는 다양한 미분법/적분법을 배우게 됩니다. 그 중에...
-
6월 모평이 4주 앞으로 다가왔습니다. ‘평가원 주관’, ‘현역부터 n수생까지...
-
미통기 ‘다항함수의 적분법’과 적통 ‘적분법’으로 들어가면 ∫(integral)을...
-
[박수칠] 맞췄든, 틀렸든 이유를 제대로 모르면 정리는 필수입니다. 22
성적 향상을 원한다면 경계해야 할 것이 몇 가지 있습니다. 그 중에는 ‘자기 실력에...
-
[박수칠 수학-미적분과 통계 기본]이 4월에 나옵니다. 4
아~주 소수의 학생들만 애용하고 있는 박수칠 수학의 저자입니다. ^^ 작년 12월에...
ㅗㅜㅑ
개꿀 팁 사랑합니다
와 2분만에 첫플!
감사합니다 ^^
이거 삽자루센세가 기출이랑 해모 해설할때 쓰시던 것이네요 ㅎㅎ 유툽에서 보고 신기해서 배워뒀네요
2014학년도 수능 30번 문제 풀 때 진짜 쓸만하죠~
난만한씨의 곱함수의 그래프 개형이 기억나군요 ㅋㅋ
한완수 최신판도 본문처럼 설명되어 있나요?
2012년에 나온 한완수 가지고 있는데
거기서는 f(x), g(x) 각각의 특성을 조합하는 방식으로
그래프를 그렸던 것 같거든요. (좀 어렵...)
네 지금도 f(x),g(x) 로 각각 나누어서 각각의 특성을 이용하여 간단한 개형을 추론하는식으로 나와있을꺼에요 . 저는 도함수와 이계도함수를 이용하지않고 개형을 추론해보는것에 주목해서 생각난다고 말한듯 ㅎ
아~ 그렇군요.
좀 어렵긴 하지만 확장성 면에선 한완수에 기술된 방식이 더 좋죠.
본문의 방식은 x절편이 없으면 망이라... ^^;
t->inf t^2/e^t =0인건 어떻게..아나요??
1. ∞/∞꼴이고 분모·분자가 모두 미분가능하기 때문에 로피탈 정리를 2번 씁니다. 로피탈 정리 적용 결과가 수렴하기 때문에 문제 없습니다.
2. e^t을 테일러 급수로 전개합니다. 그럼 차수가 무한대인 다항식이기 때문에 위 극한이 0으로 수렴함을 알 수 있습니다.
3. 고등학교 과정 내에서 설명하려면 세 단계를 거쳐야 합니다.
(1) n → ∞일 때 e^n / n² →∞의 증명
e=1+h로 두면 이항정리에 의해 다음이 성립합니다.
e^n = (1+h)^n = nC0 + nC1·h + nC2·h² + nC3·h³ + ···
= 1 + n·h + { n(n-1)/2 }·h² + { n(n-1)(n-2)/6 }·h³ + ···
e^n / n² = 1/n² + ( 1/n )·h + { (n-1)/2n }·h² + { (n-1)(n-2)/6n }·h³ + ···
여기서 네 번째 항 때문에 n → ∞일 때 e^n / n² → ∞입니다.
(2) (1)로부터 n → ∞일 때 n² / e^n →0임을 알 수 있습니다.
(3) (2)로부터 x → ∞일 때 x² / e^x →0임을 알 수 있습니다.
ㅎㅎ 이항정리 방법일 것 같았습니다. 미2 내용만으로 설명할 수 있는 방법이 있나요ㅡ?
+1. 에서 로피탈..? 정리 적용 결과가 수렴하면 문제없나요?
이항정리로 보이는 방법 알고 계셨나요?
전 어떤 분이 이항정리로 증명하는 건 어떻겠냐고
아이디어 던져줘서 알아낸건데... ㅡㅡa
로피탈 정리에 대해선 다양하게 찾아봤는데
'로피탈 정리 적용 후에도 수렴해야 한다'라는 조건까지
붙이는 것이 가정을 제일 tight하게 적용하는 경우더라구요.
http://mathworld.wolfram.com/LHospitalsRule.html
이 이상의 제약 조건이나 반례는 아직 못찾았습니다.
이전에 학생들 가르칠 때, 어디 학원에서 배워왔다고 하더군요 ㅎㅎ
미적분내용이아니어서 그냥 넘겼었는데..
로피탈 정리 적용 결과가 0이 아닌 값에 수렴해도 되나요?
그랬군요 ^^;
로피탈 정리는 적용 후에 0이든, 0이 아니든
상수로 수렴하기만 하면 문제 없습니다.
lim_(x→∞) { (x+sinx) / x } 처럼
분모·분자 미분 후 발산하면 로피탈 정리를 적용할 수 없구요.
대칭성의 유무는 어떻게확인하나요..?
정의역의 임의의 원소 x에 대하여
(1) f(-x)=f(x)가 성립하면 y축에 대해 대칭 (우함수)
(2) f(-x)=-f(x)가 성립하면 원점에 대해 대칭 (기함수)
(3) f(a-x)=f(a+x)가 성립하면 직선 x=a에 대해 대칭
(4) f(a-x)=-f(a+x)가 성립하면 점 (a, 0)에 대해 대칭
등이 있습니다.
그래프 그릴 땐
(1), (2)에 해당되는지 판단하는 걸로 충분하구요.
헐 개꿀... 감사합니드..♡
저도 감사드리고,
꼭 써먹을 기회가 왔으면 좋겠네요~ ^^
이관데 박수칠 미적12둘다샀는데 미적1은 어느정도 깊이로 하면될까요 ?기본문제위주로하고 수능모위기출까지는풀지말까요?
최소로 잡아도 본교재에 실린 기출은 모두 보는 것이 좋다고 생각합니다.
직접 출제 범위는 아니지만 발상이나 해법이 미적분2와 연결되니까요.
최대로 잡으면 여기( http://orbi.kr/0005897498 )에 있는
부교재 연습문제까지 다 푸는 거구요.
아울러 정오표도 꼭 참고해주시구요.
교재 구입 감사드리고,
오류/오타 때문에 학습에 불편을 드려 죄송합니다.