[수학칼럼] 부정적분에서의 극값
안녕하세요 저능부엉이입니다
오늘은 부정적분 파트에 대한 칼럼으로 찾아왔습니다
오늘 다뤄볼 주제는 부정적분에서의 극값입니다
부정적분에서 극값이라는 워딩이 나온다면
여러분이 해야할 행위는 99.99% 미분입니다
그럴때 우리는 다음과 같이 행동해야 합니다
1. 미분하기 (미분할 수 없다면 미분할 수 있게 만들자)
2. 극소,극대,극값은 도함수의 부호변화 유심히 관찰
예시 문항을 통해 설명하자면
230620 입니다
먼저 극값에 관한 워딩이 나온다면 공통영역에서는
필연적으로 미분을 할 수 밖에 없다는 것을 명심하세요
하지만 미적 선택자가 아니면 이대로 미분하기가
어려워 보입니다. 그렇다면 미분가능하게 만듭시다
미분이 이렇게 됐습니다
그렇면"g'(x) 의 부호가 1과 4에서 음에서 양으로 바뀐다"
이사실을 사용해야 겠습니다(극솟값이기 때문에)
|f(x+1)|-|f(x)|라는 함수를 그리기는 힘드니
|f(x)|에서 x좌표가 1차이나며 함수값이 같아지는 순간을
생각해봅시다
근데 지점이 총 3군대 나오는군요
하지만 우리에게 중요한것은 극솟값입니다
부호가 -에서 +으로 가는 순간이죠
따라서 |f(x+1)|가 |f(x)|보다 커지는 순간입니다
그렇기에 그림과 같이 x=1과 x=4인점을 찾을 수 있습니다
이후 대칭축이 3이고 f(1)=-f(2)인것을 이용해
계산을 끝내면 바로 답이 나옵니다
231112입니다
먼저 x=2에서 최솟값 0을 지닙답니다
따라서 2에서 극솟값이겠고 미분할 수 밖에 없습니다
우리는 그렇기에 두 가지 식을 얻을 수 있습니다
먼저 1번을 사용해 문제에서 주어진대로 그림을 그리면
이런식으로 나옵니다
(극솟값이기에 부호변화가 2에서 음-양으로 바뀌는게
포인트입니다)
이후 2번식을 사용하면
이런식으로 마무리되고 1/2에서 4까지 적분이기에
간단하게 정답 -1/2가 나옵니다
220620입니다
극값이라는 워딩이 나왔습니다
일단 미분해봅시다
다음과 같이 미분되었습니다
우리는 g'(x)의 부호변화가 단 한번 일어나도록
a값을 만들어야 합니다
일단 f(t)^4은 항상 0이상이기에 2번함수는
오직 a에서만 부호변화가 일어납니다
따라서 적분한 함수와 앞의 1번함수가 공통된 근을 가져서
그 근에서 x축과 접하도록 만들어야 할 것입니다
2번함수가 근을 갖는 지점은 x=a에서만
따라서 가능한 a값은 3,5 뿐입니다
오늘 칼럼의 핵심을 요약하자면
부정적분에서 극값내용이 나올경우 무조건 미분
극값은 도함수의 부호변화가 핵심
이 되겠습니다
사실 어느정도 수학을 하는 사람에게는 매우 쉬운 내용이기도 그럼에도 의외로 극값에서 도함수의 부호변화를 바로 연결 짓지 못하는 사람이 존재하다고 생각해서
행동강령적인 느낌으로 칼럼을 적어 봤습니다
들어주셔서 감사하고 좋아요는 제게 큰힘이 됩니다
다음에도 좋은 칼럼으로 돌아오겠습니다
[수학칼럼] 등차수열 정복하기 -
[수학칼럼] 정보의 용도 파악 -
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아침에도 샤워하고 밤에도 샤워함? 난 항상 밤에만 샤워하는데
-
6모 내기 비용 빼놔야 함..
-
뭐가 낫나요?
-
과외돌이 패드가 없음… 10
숙제문항복습은 어떻게 해야할지 암담함과, 서바 배틀은 어떻게 해야할지 막막함이…...
-
애매하게 졸리네 3
내가 이시간에 자고 일어날 수 있는 사람이 믿기지가 않아여…
-
ㅋㅋㅋㅋ
-
아이패드의 장점이 뭘까
-
추합률 작년,재작년 30프로였던 곳이 올해 40프로까지 도는건 아예 불가능한가요???
-
싫어할수가 있나
-
재종 학원 추천 1
재종학원 추천해 주세요 수능3등급 기준으로 대성 시대인재 어디가 나을까요?
-
돌아오지 않는다는 것을 잘 알아 하루하루 후회를 남겨 두지 마 고독이 낳은 분노마저...
-
그냥 뭔가 내가 너무 무지하단 사실이 슬픔 완벽주의 성향이 이상한데까지 뻗어있음...
-
한의붙었는데 10년후에도 메디컬들이 지금만큼위상일지 모르겠다 칼질당할꺼같아서 걱정임.
-
크아아 왜 휘지 열받네
-
온 세계가 돕네 그냥
-
안녕하세요 독서를 읽는 법 자체를 기르고 싶어서 인강을 들어보고 있는 학생입니다....
-
현역,재수 때 쌍윤러였는데 재수6,9모 둘다 생윤 1,윤사2등급 받고 수능때 각각...
-
아직도 안 자? 1
독 하 다 독 해
-
어디로 갈지 고민입니다 반수는 할 것 같아요
-
시대 단과 대기 0
장재원쌤 미적 대기 80번이면 풀리는데 얼마나 걸리나요?
-
야식ㅇㅈ 2
-
벌써 3시네 10
다들 자러갓군
-
건대 전전 1순위신 한분이 빠져주시면 추합할 수 있는데 너무 쫄려서요ㅠㅠ 675점...
-
간단한 퀴즈(3.5) 13
평가원 역대 수학 영역 주관식 정답 중 가장 큰 값을 M, 가장 작은 값을 m이라 할 때 M+m은?
-
Pes가 뭐에요 3
그럼 저랑은 피온4 친추해요 사랑과평화우정 이에요
-
아직 응애임ㅇㅇ..
-
과외해드릴게요 2
교재는 수학의정석 수능까지 이거만 씀
-
본인 흑화해버림 4
야식 먹는 중
-
warheart ㄱㄱ
-
세종대 공대 합격했는데 수능날 평소보다 실력이 좀 안 나오기도 했고 스스로 만족이...
-
'프로포폴 셀프 처방' 의사들, 처벌한다…오늘부터 시행 2
[서울=뉴시스]송종호 기자 = 7일부터 의료인(의사·치과의사)이 프로포폴을 자신에게...
-
올해 대학가는 현역인데 기숙사비 식비는 다 학과특성상 나라에서 나와용. 제가 돈 쓸...
-
파나마, 中 일대일로 공식 탈퇴…"수년간 이익 없어" 2
[데일리안 = 정인균 기자] 파나마가 중국의 경제팽창 정책인 일대일로 프로젝트에서...
-
친구가 동국대 본캠 붙어서 슬쩍 떠보니까 동국대 wise 4년제 대학교의 특성화...
-
개극햠 루틴임? 집중도 방해되고 하지 말아야함?
-
아니 걍 암기40 문해력 60인 과목인데 이게 문과 과목 1,2등이라고? 진심?...
-
님들 안 잠? 10
잘자요
-
일단은 2명만 받아서 빡고수 만들기가 목표긴한데
-
너네 확통 선택 안하면 수학 공부 아예 안해도 된다
-
유미 후기 11
나한테는 라칸이 더 쉬움
-
다른 옯창 한 분은 군대 가셧다
-
음함수 양함수 둘 다 되는 문제에서 뭐가 더 편한가 4
감이 잘 안오던데 사설에서 내면 걍 둘 다 계산이 ㅈ더러워서 걍 음함수로 밀긴하는데...
-
여기편의점이라고 tlwkf롬들아
-
농어촌 6
나도 사실 농어촌 살고있음 근데 고등학교를 거기 안나와서 못씀...
-
적당히 부엉이햄정도로 써주면 될라나 나머지는 설명으로 돌리고
-
서강대 합격생을 위한 꿀팁 13 [서강대 25][Tip.13] 0
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
낼소개팅인데 무슨말하지 14
장난으로 댓글달시 차단
-
부산 살고 명지대 반도체.ict공 vs 부경대 전기공 어디갈까요... 의견좀 ㅜㅜ...
![](https://s3.orbi.kr/data/emoticons/orcon/024.png)
선개추 후감상왜 재업함?
중간에 인수분해 하나 잘못한거 있었음...
그래서 수정후 재업함
부정적분보단 긍정미분이죠
와 이사람 오랜만이네
지금쯤 뭐하고있을까
담달에 전역하심
![](https://s3.orbi.kr/data/emoticons/oribi_animated/015.gif)
정적분 정의 함수는 미분하고 대입한다흔히들 가르치지만 정말 중요한 태도
칼럼 잘 읽고 있어요
뻘글쓰는건 역시 다른 사람인거죠? ㅋㅋ
![](https://s3.orbi.kr/data/emoticons/oribi_animated/005.gif)
잘보고갑니다~![](https://s3.orbi.kr/data/emoticons/almeng/024.png)
미적분 내용 못 써서 0으로 바꾸어서 쓰는 거그래프간 부등호 대소 판별 유익 추 goat
![](https://s3.orbi.kr/data/emoticons/oribi_animated/014.gif)
goat이거 삭제 ㄴㄴ
첫?번째문제 아예 부정적분을 F(x)라 두고 미분해도 됩니당
근데 누가 봐도 고능부엉이신데 닉넴 좀 바꾸세요 ㅠㅠ
231112 에서 극솟값을 2에서 가지는 게 아니고 0에서 가지나요?
앗...오타
![](https://s3.orbi.kr/data/emoticons/oribi_animated/014.gif)
칼럼 너무 잘 봤습니다!!231112번을 저렇게 걍 풀어도 되는군요 ㄷㄷ
누구세요???!
세로드립임?
삼각방정식도 다뤄주시면 감사하겠습니다
담에 한번 노력해볼께요
이게 내가 아는 부엉이지