이건어떰
모순<->(A and not A)<->거짓
모순<->거짓
무모순<->참
---------------------------------
공리는 참이라는 증명이 없다
따라서 귀류법 증명도 없다
따라서 공리를 부정하면 "무모순"이다
---------------------------------
위 둘 을 연결하면,
"공리를 부정하면 참이다"
_______________________
전제가 참이면 결론이 참이다
대우명제
결론이 거짓이면 전제가 거짓
공리는 전제에 속한다
공리를 부정하면 무모순 은
공리가 거짓이면 무모순 이다
즉
결론이 거짓이면 전제가 거짓이고 전제가 거짓이면
공리가 거짓이고 공리가 거짓이면 무모순이다
줄여서
결론을 부정하면 참이다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
원래 저런 성향인가
-
현역 물2ㅋㅋ 19
07 현역이 물1 선택에서 물2로 전향하려고 하는데요 물2 6평까지 1등급...
-
너무 그림이 고퀄이면 제가 못그려요
-
작수 41로 1인데 7월부터 합류한다치면 무슨 강의부터 듣는게 나을까요
-
공부법 커리 등등 아무거나..
-
착하고 온순해 자리를 바꾸어 달라는 친구의 부탁을 잘 들어주었으며 친구 웃기고있네
-
프사 추천 좀 2
ㅊㅊ
-
슬기<—-이상형 ㄹㅇ 성격 너무 좋고 너어무 예쁨 덱스도 남성적으로 잘생기고 매력적이라
-
자기연민은 4
ㄹㅇ 답이 없음
-
한양 경영 0
한양 경영에서 공대로 전과나 다수전공 많이 빡셀까요?
-
뉴런 스블 0
뉴런 작년에 들었는데 거의 까먹었고 26뉴런 다 사서 미적 띰3 강의 7개분...
-
손 들어주세요
-
이런 널 보며 행복할 나를 알잖아
-
불쌍함
-
레츠고 팀 발차기 마스터 리신 , 호날두 , 마스터 우 , 정석민 lets go
-
⭐️ 연세대학교 중앙새내기맞이단에서 25학번 아기독수리들을 환영합니다 ⭐️ 0
⭐️ 연세대학교 25학번 아기독수리들 주목 ⭐️ 안녕하세요! 연세대학교...
-
미래가 두렵다
-
나도 그림 그려볼까 12
이미지 주삼 2명까지 받음
-
작금의 세상에서 발생하는 갈등은 사람들이 서로를 이해하지 못하는 것에서 촉발된 것이...
-
내맘대로 그린다
-
물2 현정훈쌤 정규반 개설 안해주세요? 재종에서만 강의하시는거에요? 아놔 아무도...
-
경한은 너무 레전드 높던데 반영비 정상화되면 나도 비빌만한가 8
적96이상찍으면어찌저찌비빌만하지않을까싶어
-
찐이 항복선언한건가
-
캔맥 ㅊㅊ 받 6
ㅈㄱㄴ
-
외화유출범등장 16
26분 뒤 매국노 될 예정
-
눈성형마렵네 8
일단눈이너무몬쉥겻어..
-
다른 지방 교대들보다 부산교대가 좀 더 높다는거 같은데 맞나요? 집이 수도권이고...
-
올해도 목표하는 바 모두 이루시고 늘 행운만 깃들길 제 마음 담아 진심으로 응원하고...
-
새르비가 뭔가요. 10
-
ㅆㅂ
-
전에 얘기한거긴 한데 너무 개그욕심내거나 활발해보이려고 무리하지 마셈 그런건...
-
챗지피티나 이런거 가지고 좀 놀어보셈 대학가면 많이쓸건데 익숙해지면 좋음
-
전남대 경영학부 0
예비 43번이면 가망없겠죠 ,,? 이번에 무조건 붙어야해서 그냥 다른데 붙은곳 넣는게 맞죠 ?
-
호감형외모와 목소리도 필요한듯해요... 스타성이라는게
-
일단 저는 경한이 아니여도 지금 학교에 너무 만족해서 반수같은건 안할거지만...
-
이거 루피인가 옹기종기 모여있는게
-
솔직히 1
반할뻔했음
-
100-96 1등급 95-91 2등급 90-86 3등급 85-81 4등급 80-76...
-
정확히 폰 모서리가 코를 찍었어 아오아파라
-
좀 무서워서 듣기싫은 쌤들이 있어요 정석민쌤같은.. 그렇지만 잘 듣고있어요 잘생긴...
-
군대내에 토익 공부용 아이패드 사용이 안되는 이유:안되기때문 ㅋㅋㅋㅋㅋㅋㅋ...
-
무빙건햄 2
공군가심??
-
영양가있는 똥글 쓰는법좀 알려줘
-
ㄹㅇ 말이 안나옴 차은우까진 아닌데 비슷함 ㅇㅇ
-
별일 아니겠죠??
-
2409 34번 1번 선지 고고한 취향 근데 이거 쓰는거 맞냐?? 다 싸우는디
-
오루비칭구들 모두 잘장
대체 이 주장을 끊임없이 반복하는 목적이 무엇인가요.. 정말 순수하게 궁금해서 여쭙습니다
진정한 자유의 논리적 기반확보
공리를 부정하면 그 공리 안에서는 무모순이 아니라고요오오
공리를 부정하면 공리가 거짓이 되는데요
공리가 거짓이 되는게 아니라
공리를 부정하는 명제가 거짓이 되는거예요
A를 부정하면 A가 참이 아니라는말 아닌가요
이렇게 생각하셈
공리계 안에서 공리는 무조건 참임.
공리에 태클걸면 태클건 명제가 거짓임.