쉽고 재밋고 개 유명한 문제 (3)
전 문제들처럼 엄청 쉽진 않지만 여전히 쉬워요, 근데 너무 유명해서 몇명은 알꺼같은데 ,,
6개의 점이 있고, 이 점들중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결했다.
(어떻게 3점을 골라도 일직선 위에 있진 않다.)
이 때 한 색의 선분으로만 이루어진 삼각형이 있음을 보여라.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그냥 시간 때려박아서 풀어야 하나요.. 익숙해지는거 만으로는 시간 단축에 한계가 있는것 같은데
-
친구 만나야하는데요… 혹시 아신다면 답변 부탁드려요ㅠㅠ
-
이번에 둘다 안정으로 쓸 성적 나왔습니다 집은 수도권이라 가천한이 위치는 압도적으로...
-
둘 중 한 명과 사귀어야 한다면?
-
군수생 달린다 6
수학공부 달린다
-
7연승+5점차 클린시트 대승 ㅅㅅ
-
이제 2학년되는 정시파이턴데 모고는 보면 88-92나오는 어느정도 상위권...
-
으흐흐 할 일 있을때 오리비 표정이랑 딱 맞물려서 쓰기 좋음
-
네이버 뉴스? 유튜브? 인터넷커뮤?
-
수학 표점 2점 깠는데, 진초면 괜찮아 보임? 서강대
-
여기서 어떻게 중심각이 90도인걸 알수 있나요?
-
벌써 12월이당 3
시간 빠르네 ,,,
-
칸타타님 글을 모두 정독해봤는데 논리적 설명이 부족한 거 같아 반박한다 칸타타님은...
-
전 딱히 고등학교에 미련 없어요 비록 설대의 꿈은 날아갔지만 사실 성적부터 부족한...
-
너말이야 너
-
고공의 꿈은 사탐런으로 날아가고... 설사과의 꿈은 cc로 날아가고...
-
ㅈㄱㄴ 국어 98 수학 96 영어 78 국사 5등급 물1 47 화1 50 어디가 나음?
-
제곧내입니다 지구 쌩노베인데 1년만에 수능 50 가능한가요? (원래 화학햇엇음)
-
교재패스를 살까 하다가 저걸 과연 다 들을수 있을까 싶어서요
-
생일 기념으로 덕코 좀 주세요 (덕코 줍줍) 대신 아가 시절의 저를 대신...
-
어디가실 거임?
-
ㄹㅇㅋㅋ
-
사실은 매번 수능마다 표점은 다 다르겠지만 일반적으로 물1,화1은 표점이 낮고...
-
특정 키워드 검색했는데 그 키워드 들어간 뻘글을 수십개 쓴 사람때문에 너무 거슬림...
-
수학 교사한명이 수1 수2 미적 확통 기하 다가르치나요 아니면 선택과목마다 담당교사가있나요??
-
더치페이가 거지근성이라 하는데 그럼 얻어처먹기만 하는 마인드를 가진건 대체 뭐임?...
-
좋은아침 13
아침이되니한결 마음이편해요
-
타코야끼 먹을거임
-
뇨 체를 만나고 달라졌음뇨 이제 나도 부드러운 사람임뇨
-
안냥 3
반가웡
-
미적틀 96은 2
백분위 100 가능성 아예 없는 건가.. 9평 100도 백 99 주고.. 이게 뭐야 ㅠㅠ
-
그리고 수학 1등급 이상 정도 되면 걍 수능 버리고 연논만 올인하는게 나을거같음...
-
흠
-
과외하고싶어요 0
피차 같은 미성년자한테 과외를 믿고 맡길 학부모가 존재할지... 뭐야 나도 고수익 알바시켜줘요
-
"국잘수망"이면 개추 ㅋㅋ
-
그분 근황 궁금한데 닉네임이 생각안남.. 강x 리뷰글 쓰시던 분이였는데
-
공대=>취업 테크후 40대에 수능판 복귀해서 역대급 저출산 물로켓 현역들 제압하고...
-
이 성적으로 경북대 부산대 문과 하위과 가능하나요??
-
부모님 감사합니다 열심히공부해서 대학갈게요
-
과탐 가산점 0
과탐 택1만 해도 가산점 적용되는 학교 있나요???
-
벌레다처먹을 11
버드기상
-
확통사탐인데 아무래도 수학을 진득하게 파는게 낫겠죠? 실전개념 -> 기출 -> N제...
-
수능 빌런 신고 7
존대 쓰니 잘 안 읽히는 것 같아 명사형어미로 썼습니다ㅠ 이번 수능 영어 때 뒷자리...
-
얼버기 6
오늘도 9시 기상 성공
-
6시간 자도 컨디션따라 정신 훼까닥 하는 편이라 대가리 컨디션 잘 생각해서 공부할거...
-
소름 끼치는 점 3
물리 난이도 23 < 24 < 25 1컷 23 = 24 = 25 (23은 표점...
-
ㅎㅇㅎㅇ 7
배경사진 바꿈 ㅎㅎ
-
공사 0
반갑습니다 현재 외고 다니는데 갑자기 공군사관학교가 너무 가고 싶습니다 현재...
-
게임 과금할까 했는데 막상 하려니까 돈 아깝다
이거 6개 점이 다 일직선상이면 어캄
아 ㅈㅅ 그거 빼야되네
어떤 3점도 일직선 위에 있지않음뇨
이런 기본적인걸 빼먹다니
임의의 점 p를 선택합니다. p에서 다른 5개의 점으로 연결되는 선분은 5개가 있습니다. 이 선분들은 빨간색 또는 파란색입니다. 비둘기집 원리에 의해, p에서 뻗어나가는 선분 중 적어도 3개는 같은 색을 가집니다. 일반성을 잃지 않고, 이 색을 빨간색이라고 가정하겠습니다. (만약 파란색이라면 빨간색과 파란색을 바꿔서 생각하면 됩니다.)
p와 빨간색 선분으로 연결된 3개의 점을 q, r, s라고 부르겠습니다. 이제 세 점 q, r, s 사이의 선분을 살펴봅니다.
만약 q, r, s를 연결하는 선분 중 하나라도 빨간색이라면, 예를 들어 q와 r을 연결하는 선분이 빨간색이라면, p, q, r은 모두 빨간색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
만약 q, r, s를 연결하는 모든 선분이 파란색이라면, q, r, s는 모두 파란색 선분으로 연결된 삼각형을 이룹니다. 따라서 증명이 끝납니다.
어떤 경우든, 한 가지 색의 선분으로만 이루어진 삼각형이 존재함을 보였습니다.
결론
6개의 점이 있고, 이 점들 중 임의의 두 점을 빨간색 혹은 파란색 선분으로 연결하면, 반드시 한 가지 색의 선분으로만 이루어진 삼각형이 존재합니다. 이 문제는 램지 수 R(3,3) = 6의 한 예시입니다. 즉, 6개의 점이 있으면 어떤 방식으로 두 가지 색으로 색칠하더라도 단색 삼각형이 반드시 나타난다는 의미입니다.
흠..
완벽하긴하네..
ㄷㄷㄷㄷ
지피티 냄새
멍청한 공대생은 GPT 없이 못 살아
님 항상 보면 수학 이론들 많이 알고 계시던데 수학과 지망하시나요
넨
오 ㄷㄷ 멋지네요 필즈상 수상하시길
그건 좀..
뭐임 또 나만 저능하지 ㅜ
저거 지피티임뇨
풀엇음뇨 헤으응
한 점 기준으로 같은 색 선분 3개는
필수인거 생각하면 풀리네용
이거 맞아요
선이 교차해서 만들어지는 삼각형 말고
점민 이어서 만들어지는 삼각형만 따지면
점 세개를 생각하고 빨빨파로 비원색 삼각형이 있음
그러면 한 빨변에 대해서 파파로 비원색 삼각형을 또만듬
이때 마지막으로 만든 삼각형에서부터 대충 대각선 그으면 파란색이든 빨간색이든 원색 삼각형이 생김
머지 이게
먼지 모르겟음
이거 됨뇨?
삼각형이 주어진 6개의 점으로만 이루어져야됨뇨
망했뇨
애초에 이풀이도 틀린거같기도 걍 머리가 안돌아감
문제가 너무 길어요 요약해주세요