다들 수학 제일 극혐하는 파트가 어딘가요
저는 수열이랑 수2 접선활용쪽
수열은 그냥 극혐하는 유전자가 있는거같고 수2접선쪽 앞에는 진짜 그냥 계산밖에 없어서 싫음
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
머리 안감으면 오래감??? ㄹㅇ 이렇게 간단한 문제 였나
-
어실주 라노벨 재밌노 ㅋㅋㅋ
-
하 진짜 0
서울대 가고 싶다니까 한의대는 될만한 곳이 4개나 있고 정법 표점 개조져서 서울대는...
-
관제사 되는 과 맞나요? 아는동생이 넣어보고싶다는데 항공대 쓸 성적은 아닌걸로알아서
-
어그로 ㅈㅅ해요.. 메가 문제은행 커스텀 문제 단원이랑 난이도 설정하면 알아서 문제...
-
누가 좋나요?
-
さっぱりさらさら散々な 毎日だろうとフラスコの反応 存在証明見つけたい...
-
십덕글 좀 싸고 싶은데 14
요즘은 좀 눈치보이네
-
연고대 인문 4칸인 곳이 10군데 있는데 나중 돠면 다 2칸 3칸 될까요? 어니면 가능성 적나
-
국어 3에서 벽느끼다가 수능날 백분위 99까지 올린데에는 후반기에 1일 1실모 했던...
-
2-2까지 1.47 - 1.67 - 1.5 - 1.3 입니다. 전체평균은...
-
하니~ 하니~ 8
많이 보고 싶어
-
원광 503인데 1
한밖에 안되나 ㅠ
-
하아 잘 본 건 안 봐주고 못 본건 부각하고 ㅠㅠ 3년째
-
587?
-
머리 자른지 일주일되었는데 이게 문제인가,,,, 집에서 혼자 깎았는데,,,,, 근데...
-
인생이 더 중요하기 때문
-
글로벌딱지반납해야
-
사문 3개월 만에 백분위 99 만들어놨더니 다들 물변표 때리고 있네 영어 1은 이제...
-
올해는 가야한다...
-
숙대 컴퓨터과학 vs 인하대 컴공 vs 아주대 산업공 3
골라주세요..... 숙대는 서울이고 대학 간판이 셋 중 젤 나은편인 것 같아서...
-
정시 라인 3
건동 중에서 하나 상향 쓰고 과기 숭실 아주 중에 두개 쓸까 생각중인데 어떤가요..???
-
수시 이번에 너무 망쳐서 1학년 2.4?, 2-1 2.9 2-2 3.4?3 이정도로...
-
필자에게 많은 사람들이 묻는다 "너는 왜 수능을 계속보니?" "그 정도면 그만하는게...
-
마구마구 방귀를 끼는거임 머리를 회전축 삼아서 뒤구르기해서 일어나면 됨뇨 문제는...
-
높나요? 십..... 1>2에 불변이어야 성대 연대 가눈데
-
왜 다들 물변이라고 예측하지.. 어려운 탐구 잘봤는데 의미가 옶네 ㅅㅂ
-
장수생은 장애인이다 이런글싸는데 니네 엄마가 장애인 아니고 ?
-
홍익대 합격생을 위한 노크선배 꿀팁 [홍대25][장학금꿀팁] 0
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
과외나 수업 좀 본격적으로 하는 그런 방향 없나요? 6년 내내 영어 1등급...
-
사실 뻥임뇨
-
그거 반수반도 기준 동일함? 목동들어갈건데
-
국숭세단 라인인데 지금 표본기준 경쟁률 1:4 이상인데 여기서도 더 들어올까요?
-
사바사긴 한데 식사의 질이 급격하게 낮아질 가능성이 있음 온전한 부엌과 조리기구를...
-
진짜로 이번엔 1등급을.. 더파이널리라스틀리라스트댄스 모름?
-
IZ*ONE
-
그건 별개로 탐구 백분위 69 94인데 이정도면 변표가 어떻게 나오든 영향이 없는...
-
시대인재 4
원래 모집요강 발표가 늦나요? 3합7은 되는데 무시험전형 안될까요?
-
예상이랑 너무 다르네 ....주말 어케 보내지
-
ㅡ언매 확통 백분위 92 93 영어 1 탐구 95 99인데 연고대 어문은 많이...
-
이름대기
-
핫게 무슨 내용인지 알려주세요!!!ㅠㅠ
-
문서등록 문자 3
유웨이 소속 대학은 원래 문서등록 문자 안보내나요? 진학사는 왔었는데
-
탐구가 34뜰거같아서 이게 참말로..흠냐
-
자존심 세우겠다고 돈 안벌고 나이 먹고 부모님한테 손벌리는것보다 백배 나은듯
-
그정도면 걍 다녀라 ㅁㅊ새꺄 듣고옴
-
우진쌤스토리뭐지 5
뭔일있나요?
-
진짜 가기 싫다
-
가능성 많이 적나
-
의대생 과외 시급 25
중딩 2.5 고딩 3 이면 싼편임? +)싸다는 분이 많네요..! 그럼 보통 초보는...
삼각함수 좋아요
노베킬러고트
저런 힘내세요
도형까진 할만한데
사인 코사인 그래프 지멋대로 움직여놓고 교점 찾는 문제가 참....
아 이거 저만 이런거 아니였네요 삼각방정식 그냥 패고시픔
이번엔 여기서 딱히 걸릴 만한 문제가 안 나왔으니 다행이지
수열의귀납적정의
크악노가다시러
수열 자체도 극혐인데 그 안에 더 싫은게 귀납수열 크아악
삼각함수 도형이요.. 안보이면 그 시험은 조진거고
보이면 그 시험 잘본거인 수준으로 버거움
도형은 의외로 행동강령 정리하면 잘보임
나중에 칼럼이나 써볼까
2등급따리가 칼럼써도되나
전 수열이 제일 재밌던데 ㅠㅠ
기하로 극복하시는건 어떰
악마;
솔직하게 확통 경우의 수가 킬러로 나오면 개빡일듯 ㅋㅋㅋㅋ 28 수능이 매우 기대되는 부분
내신때 확통하다가 토하는줄
28수능 이후라고 해도 경우의 수가 킬러로 나올 가능성은 거의 없다 생각해요
걍 지금 수능에서 선택과목 확통 고른 거랑 거의 같은 범위인데 그대로 수1수2로 변별할 듯
역사적으로 경우의 수, 순열, 조합이 수능 범위가 아니었던 때가 더 드문데 킬러급으로 나온 건 거의 없었죠...
지금 미적분 표본까지 변별해야하는데 수1수2만으로 한다고?
상황이 좀 다르죠
그냥 옛날 B형시절처럼 1컷 96~92 정도로 지금보다 1컷이 높은 수준으로 낼 가능성이 훨씬 높죠
옛날 가형/B형이 표본수준이 낮았던 것도 아니고, 수1/수2가 어려운 문제 못 내는 파트도 아니고 (사설들 보면 미적분 쉬운 회차도 1컷 77 찍고 있는 거 예사잖아요)
옛날에는 미기가 필수여서 굳이 확통으로 변별안한거 아닌가요 수1/수2를 지금보다 고이게 내면 그냥 노마더인데 ㅋㄱㅋㅋ..그렇다고 28체제에서 컷을 높이면 변별이 안되고
수2는 솔직히 이미 한계치까지 간 거 같긴 한데 ㅋㅋㅋ 수1은 아직 무궁무진하다 봅니다
확통, 그 중에서도 조합론 파트는 평가원이 일부러 선을 넘지 않는 거라고 생각해서요.. 예전 스티커 문제 때도 '사과'한 적도 있다 들었고
뭐 이론적으로야 KMO 조합론 문제 그대로 갖다 박아놔도 교육과정 부합하잖아요
가나형 킬러몰빵 시절 나형에서
그냥 확통 킬러 내는 게 아마 교수급 출제자 입장에서 더 편할텐데
그런 거 냅두고 170930(나) 같은 이상한 노가다 문제를 내는 걸 택한 이유는 있다 생각해요
어디까지나 개인 의견임을 전제하자면
올해 6평 확통 28번, 30번, 23학년도 확통 30번이나
17~21 확통 중에서 가장 어려웠던 문제들 정도가 난도 맥시멈이 아닐까 싶어요
그리고 위에도 말했지만 저는 전공통 체제로 가면 옛날처럼 1컷 96, 92 정도를 목표로 출제할 가능성이 훨씬 높다 생각해요
지금처럼 1컷 84 전후가 일반적이게 된 것 자체가 선택체제 도입 후이고,
22예비시행 문제를 보면 이는 선택체제 도입 후의 입시 변화를 고려한 의도적인 변화라고 생각해서요
미분기하 ㄷㄷ
선 안넘고도 충분히 어렵게 할 수 있는 영역이라 ㅋㄱㅋㅋㅋ..적어도 확실한건 지금까지 확통시험지 중에서는 제일 어려울 것 같습니다
그리고 이 짓을 다시 하진 않을 거 같긴 하지만
수1 범위에서는 유서가 깊은 끝판왕 변별문제를 낼 수 있죠
"격자점"
대학수학능력시험 수학 영역의 모든 응시자가 대수, 미적분I, 확률과통계 (2015 개정 교육과정 기준 수학1, 수학2, 확률과통계) 범위 내에서 문항을 해결하고 변별되어 원활한 대학 입시가 이루어지도록 하려면 확률과통계에서 난이도가 매우 높은 경우의 수 문항을 출제하는 것이 불가피하지 않을까 생각했는데, 그동안의 기출문제에 근거를 두고 다르게 예상하시는군요
미적분I의 경우 이미 다양한 사고 방식이 다루어졌다는 데 동의합니다. 대수에서는 고2 전국연합학력평가 시험지에서 확인할 수 있는, 그러나 아직 수능에서는 본격적으로 다루어지지 않은 사고 과정과 상황을 출제하면 28, 29, 30수능 정도에서는 충분한 변별력을 확보할 수 있지 않을까 조심스레 생각해 봅니다.
개인적으로 2022 개정 교육과정에 기반한 새 수능의 핵심은 '융합'에 있을 것이라고 생각합니다. 조건 A, B, C를 만족시키는 모든 삼차함수 중 한 가지를 골랐을 때 그것이 조건 D까지 만족시킬 확률을 구하라는 문제나, 구체적인 수치를 묻지 않고 선지 판단을 시키던 2015 개정 교육과정 물리학I처럼 정확한 접점의 x좌표를 구하도록 하지 않되 지수함수와 로그함수 같은 초월함수의 접선의 방정식을 슬쩍 다루게 한다거나...
25수능을 향해오며 점점 공통수학1, 공통수학2 (2015 개정 교육과정 수학(상), 수학(하)) 의 비중이 커져왔다고 느끼는데, 이 흐름을 따라간다면 두 2x2 행렬의 성분으로 서로 다른 여덟 개의 함수를 제시하고 두 행렬을 곱해 얻어진 행렬과 네 실수를 성분으로 하는 2x2 행렬이 같다는 조건을 주어 연립방정식의 해를 구하도록 하는 문항도 새 시험지에서 확인해 볼 수 있지 않을까, 물론 행렬식도 배우지 않고 가우스 소거법도 배우지 않기 때문에 이러한 방향으로 문항이 출제된다면 교육과정 선밟기를 첨예하게 해야할 것 같긴 합니다만
행렬을 굳이 고1수학에 넣고, 역행렬조차 가르치지 않는 이유는 행렬 재추가가 입시 부담에 영향을 주지 않게 하기 위해서입니다. 따라서 새 수능에 행렬으로, 그것도 선형대수와 줄타기를 하는 수준으로 어려운 문제가 나오는 것은 불가능하다고 생각합니다.
마찬가지로 다항함수의 미적분과 확률을 섞는 건... 누가 봐도 선을 넘는 출제행태라 불가능하다고 봅니다. 내신에서도 그런 짓은 웬만하면 안 해요. 설사 단발성으로 한 번 정도 출제되더라도 지속적일 수는 없을 거라 생각해요. X걱세 같은 데서도 가만 있지 않을 테고요.
무등비 삼도극
그거 아직도 나오나요
교과 내용이긴 하죠
모든 ~의 합
여러 개 구하기 싫은데
지로삼 미만 잡
09교과 시절 미2안하면 저 내용 첨 접해도 어려움
전 미적분.. 계속 틀리네요
특히 적분
제일 첫인상 흉악했던건 지로삼이요!
현대대수요
헉
가환환을 탁
가환환이 commutative ring인가
마자용
진짜 수학 한글 번역 기괴한 거 같음
옹골집합 못참는데..
옹골집합 이러는 거 보니까 너무 쓸데없이 김김계 본 수학과 같네
수리 복전하세요?
미적 전부요
수열 지로 접선계산
기트남어 수1 미적 도형은 개재밌음
공간도형
적분
수열
자연수의 덧셈과 뺄셈
이 모든 고통의 시발점
수학은 다 재밌는듯. 다만 문제가 어려울뿐...
치환적분 부분적분 너무싫음 계산실수 무조건 터져서 .. 계산 길어지면 뇌절
중적분
지수로그함수 그래프
이게 맛있는건데잉;;;;;;;;;!!!
정적분으로 정의된 함수/지수로그 쌩계산/공간도형
수열 극혐
ㅇㅈ
수열 못이김
수열