하시발 이걸왜 못알아먹지
∀x(x∈A∪A^c) 이 식은 참인데
"모든 x가 A또는 A^c에 속한다" 라는 의미고
이말은 모든x가 원소로서 존재해야한다는 말입니다
모든x에서 x는 무엇이든지 될수있고
모든것(x)이 우리세계(A)나 다른세계(A^c)에 존재한다
는 말입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
올만에 칵테일 9
아쿠아마린
-
대학들어가서 오르비 하고 수능특강 붙잡고 있지 마세요 자기 진로 학과 일 열심히...
-
생윤임 ㅇㅇ 근데 과탐분들이 하시기에는 좀 생소하실 수도… 그래도 개꿀과목이라고 생각
-
중2때였나 자야 해보고싶어서 RP주고 샀음....ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
사문 올해 컷 8
난이도 대비 좀 높은거같긴해
-
응애 나 힘들어 9
나 국어 해야해
-
정신차려라
-
인생노잼 1
할게없서
-
롤할까 배그할까 8
고민이양
-
여기 시설 괜찮나요? 에어컨 화장실 등등 시설 어떄요?
-
도시에서 났고 또 자랐습니다 이젠 질릴 법도 하여 새벽 일찍 남동으로...
-
1컷 45 2컷 43 3컷 41 이라매요
-
맞지?
-
과탐러들이 사문에서 전부 집결중인게 작년보다 훨씬눈에보임 이번에 과탐하고 쳐박고...
-
끄투코리아 냉이채널 10
누구나 알아볼법한 방 제목 비밀번호:orbi
-
음 그래그래 0
형은 아까 프장에서 애플이랑 아이온큐를 더구매햇어
-
직방 설명란에 있는데 방 쪼개는 경우 있다 그래서 거르는게 좋음?
-
팀 07 집합!! 쪽수도 젤 많은데
-
뭐야 2
푸리나 어디감???
-
이거 정말 좋은 전략이잖아?
-
그러니까 다른 사람의 생각도 결국 그 사람이 걸어온 길에 의해 만들어졌을 뿐이다....
-
나랑 비슷항 사람 몇명봐서 안심하기로했음
-
끄투하실 분 10
그냥 가볍게 하실 분
-
내가 젤 좋아하는 샤프인데
-
3:1 빡세네 1
난 범부구나
-
해린아!!!
-
야심한 시각... 15
짜파게티에 치즈와 계란을 곁들여 먹고 싶구나... 거기다 고추기름 살짝 뿌리고...
-
히히
-
남성성을 무슨 매사에 관심없는 독고다이로 생각하는거같음 . . . 그건 싸패야 ㅂㅅ들아
-
진로 학과 미래 정치 사회 개인사 연애 운동 등등등 암 거나 ㄱㄱㄱ
-
도움 도움 3
렛으로 시작하는 단어 좀..
-
반반 3
이게 제일 흔하구나
-
컴공일기 270 0
https://school.programmers.co.kr/learn/courses/...
-
진짜 스레드 옮긴거같노
-
입결 질문 4
연대 약대 704.5 붙나요? 제 위 연약 1지망 표본이네요... 그리고 혹시 빵난...
-
또 머 할거 없나 50
흐음
-
이거 컵밥 어캐 버리지 10
아나
-
반반이네요 17
확실히 반반이 많군요
-
어이가 없구나
-
나 원래 디시에서도 이런 글 다는 사람 아니였는데, 이상하게 오르비 오니까 폭주하게 됨 ㄹㅇ
-
ㅇㅈ 6
손님이 주고가셨어요 예비를 기다리며... 명절에도 풀 야간을 ㅠ
-
글고 그게 맞다 생각함 국어도 그렇게 할 듯 물론 국어는 하다가 방법이 바뀔 수도 잇는 것임
-
암산테스트 9
더는못올리겠다..
-
25 국어 풀려봤는데 6문제중 2문제 틀림 킥킥 나온 그 세트
-
남성성 여성성 테스트 12
이거 대답 어떻게 했어요 저만 모솔이엇죠 이 배신자들
-
나만큼남성적일수가없는데
-
뭐야!! 4
인정할 수 없ㄷ어..
틀리셨습니다. 현대 논리학에서 양화사 ∀x 를 포함하는 명제는 반드시 x의 존재성을 보장하지 않습니다. "모든 x에 대해 p이다" 라는 명제는 설령 x가 존재하지 않더라도 참이 될 수 있습니다
모든 x가 U에 속한다면, 모든x가 일단 원소로서 존재해야만 하는것 아닙니까?
아닙니다... 그 가정이 틀렸어요. 모든 x에 대해~ 라고 진술하는 명제는 반드시 x의 존재성을 가정하지 않습니다.
∀x(x∈A∪A^c) 이식은 참이라고 하던데요?
네 맞아요. 하지만 '모든 x'와 같이 양화사 ∀를 포함하는 명제는 x가 실존하지 않아도 참이 될 수 있습니다.
아니 제말을 잘들어봐주세요. "모든x가 U에 속한다" 가 참이라면 모든x가 원소로서 존재한다는 말이잖아요
아뇨.. 더 이상 그만 우기세요. 그 명제는 x의 존재 여부와 무관하게 항상 참인 명제입니다
아니 제말이 왜틀렸죠?
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
논리학에서 양화사 '모든' 은 반드시 그 대상이 존재해야만 참이 된다고 보지 않으니까요... 우선 존재해야만 한다<<<<이게 틀린 가정이라는 거에요.
∀x(x∈A∪A^c) 이식이 참이니까 x가 원소로 존재할수 밖에 없다고요
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
그게 아니라는겁니다. X의 존재 여부와 무관하게 모든 x라는 표현은 성립할 수 있어요. x가 존재해야만 모든 x라는 표현이 가능하다 보는건 고전 논리학의 관점입니다
x가 없으면 애초에 ∀x가 아닌데요
제말 왜곡하지마세요 모든x가 U에 속하므로 모든x가 원소로서 존재하는겁니다
이 사람 어그로입니다
먹이 주지 마십쇼 선생님
네 그렇게 생각하세요
"x가 없으면 애초에 ∀x가 아닌데요" 이말이 틀렸나요?
어떤원소가 없으면 모든원소라고 할수가 없는데
하.. 왜 그렇게 반응하시죠?
현대 논리학, 특히 20세기 이후의 논리학에서는 '존재'와 '양화'의 개념이 더 명확하게 구분됩니다. 현대 논리학에서의 전칭양화사(∀, "모든 x")는 존재를 직접적으로 가정하지 않습니다. 즉, "모든 x에 대해 P(x)가 참이다"라는 명제가 참이 되려면, 해당 범위 안에서 거짓이 될 수 있는 항목이 없다는 것만을 의미하지, 실제로 그 범위에 속하는 x가 존재해야 한다는 것을 의미하지는 않습니다.
특히 현대 수리논리학에서는 공집합과 같은 개념이 많이 등장하는데, 공집합에 대한 모든 명제는 자동적으로 참으로 간주됩니다. 예를 들어, 공집합에 속하는 모든 x에 대해 P(x)가 참이라는 명제는 공집합 안에 아무 것도 없기 때문에 참으로 간주됩니다. 이처럼 현대 논리학에서는 존재와 무관하게 양화사를 다루는 경향이 더 강합니다.
∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그리고 (모든x에 대해 x가 U에 속한다) 라고할때 어떤x가 없으면 (모든x)라고 할수도 없다고요
위에것도 gpt 답변인데요...
"공집합에 속하는 모든x" 이게 대체 뭔말이죠
잘 읽었습니다. 혹시 '어몽어스가 의심스럽다' 라는 명제도 증명해주실 수 있나요?
하나 더 지적하고 가겠습니다. A라는 집합을 우리 세계에 실존하는 대상이라고 잡았을 때, A^c는 말 그대로 A에 속하지 않는 모든 것이 될 수 있습니다. A^c에 속한다는 것이 반드시 다른 세계에 실존한다는 의미가 될 수 없죠.
A^c에 속한다는 것은 '우리 세계에 실존하는 대상이 아니다' 와 같은 의미가 되고, 여기에는 곧 소설 속 세계와 같이 우리 세계에 속하지만 상상에서만 존재하고 실존하지는 않는 대상들, 우리 세계와 다른 세계에도 없는 대상들, 우리 세계에만 없는 대상들...등등 말 그대로 우리 세계에 실존하지 않는 모든 것들이 들어갈 수 있습니다.
따라서 저 명제가 항상 참이고, 심지어 x가 존재한다 하더라도 그것이 항상 실제로 존재한다로 이어지지는 않습니다....
하........∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그 말은 맞지만 그것이 꼭 x의 존재성으로 이어지지도, 실존성으로 이어지는게 아닙니다.
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
전체집합은 말 그대로 '전체'이기에 님 마음대로 전체를 세계로 한정지으시면 안됩니다.
A가 우리세계고 A^c가 다른세계입니다
그런데 A에 속한다고 반드시 우리세계에 실존한다는건 아니잖아요? 해리 포터나 마블 영화 세계관은 우리 세계에 속하는 것이지만 실제로는 가상의 세계관인것처럼
해리포터가 진짜인 세계가 있을겁니다
해리포터가 진짜인 세계가 있을겁니다
넵!
제가 왜이렇게 고집피우고 난리치는지 이해하실거라 믿습니다
x가 존재한다는 가정이 문제인거 아닌가요? 논리학에 대해선 그리 많이 알지 못하지만 작성된 댓글을 보며 든 생각은 타당성과 건전성에 혼란이 있으신것 같은데... 주장하시는 논증은 타당하지만 x가 존재한다는 명제의 참이 보장되지 않으니 건전성에 결핍이 생기지 않나요? 존재하지 않는 x를 존재한다고 하는 명제의 참 거짓이 문제가 된다는것 같습니다
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
우리가 세계에서 관측불가한 것이 실존하다고 설정하신거라면 그리고 그것들이 전체집합내에 존재한다고 가정하신거라면 주장하시는 논증은 타당하다고 생각합니다. 다만 그것이 과학적으로 가치가 있는지는 모르겠습니다.
쿠쿠리 그저 신
님
1=2라면, 3=4이다. 참임 거짓임?
참요