하시발 이걸왜 못알아먹지
∀x(x∈A∪A^c) 이 식은 참인데
"모든 x가 A또는 A^c에 속한다" 라는 의미고
이말은 모든x가 원소로서 존재해야한다는 말입니다
모든x에서 x는 무엇이든지 될수있고
모든것(x)이 우리세계(A)나 다른세계(A^c)에 존재한다
는 말입니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
. 1
.
-
가능 불가능 투표해주십쇼..
-
언매 91 (언매1틀) 확통 81 영어 2 생윤 34 사문 42 중경외시 안 될까요ㅜㅜ
-
현역때는 그냥 막 때려박았는데 반수때는 좀 더 질적인 공부를 할 수 있도록...
-
설마 이걸 지나 그건 그렇고 지금 치킨 시키면 축구 보면서 먹을 수 있으려나
-
질문있으어요 1
정시 지원할 때 백분위를 국수탐 평균으로 보는거에요 아님 국어 따로 수학 따로 탐구...
-
전에썼을때는 게이라는댓글만 주구장창달렸어서...
-
그러다 알게된 정보: 이대 논술최저 2026부터 2합 5로 완화 다시 해볼까...?
-
느낌이 안 좋음..
-
'모아' 입니다. 자러갈거라 답변은 천천히 해드릴게요. 쪽지나 댓글 편하게 남겨주세요 !
-
90분 안에 6문제 서술까지 하는 거 너무 힘든데 5개까지는 가능한데 하나씩 모르겠음
-
난 티원 미드에 12
상혁이형만 있으면 무지성 응원할거야 도란은 잡자
-
잘꼬야 6
코코낸내
-
진학사 냥대 지금 좀 후한 거 같긴 한데 냥대식 몇점부터 안정일까요 냥대 잘 아는...
-
제 독해 주관을 담은 '한대산 영어의 독해 주관 (Ver. 24.11.19)'...
-
들어가보니까 25년 기준 고1 되는 학생들 대상이던데 게시물에는 미리 해두라.....
-
그냥 기출 모음 문제집 아닌가요..?? 기출 모음집 찾다가 욕이 너무 많아서 당황..
-
어서오세요 우제님
-
동성 결혼 합법 되면 텀들이 지금 한녀마냥 표독텀으로 빙의 해서 사실혼/법률혼 재산...
-
잇올 다니신분들 0
유료 정시컨설팅 이거 하실거임?? 내일부터 신청받던데
-
수학 등급컷 1
1 2 3컷 다 거의 매년 예상 컷보다 1-2점 정도 증가하던데 이번에도...
-
모두 군밤
-
내신으로 드릴드 어떤가요? 고2 모고 기준 수학 3~4등급 나와요
-
아 잠못자겠다
-
궁금하네
-
가서 생소한 나라들 환타만 먹다가 배터지는줄 ㅋㅋ;
-
예비고3 공부법 0
8학군 예비고3이고 내신이 너무 빡세서 고2 2학기부터 정시로 돌렸습니다. 평가원...
-
뭐 이기겠지
-
요즘 느끼는게 결혼잘하는게 대학 잘가는거보다 훨 중요한듯 5
다들 결혼까지 파이팅
-
치대만 붙여주면 사수 안하겠다 생각하다가도 의대 아니면 다 뭔소용인가 싶기도 하고...
-
그럴 때가 있었지
-
백분위 기준 화작 79 미적 71 영어 3 탐구1 99 탐구2 77 건축학과인데...
-
과탐 50도 1달이면 떡을 치는데 ㄱㅊ은거 아닐까
-
과탐 백분위 0
백분위로 따지면 과탐 그래도 2과목 보단 1과목이 유리한가요..?
-
재수할때는 수학에 6~70% 투자하고 나머지 국영탐 할려는데 미적이 나을까요 확통이...
-
남고생과의 풋풋한 연애 11
이번생엔힘들려나
-
대학은 건대정도 갈 것 같고 올해 수능 원점수 국어 화작 94점 수학 미적...
-
장난쳐?
-
손흥민미쳣다 1
퍄퍄
-
하
-
놀아줄래요 8
집에왓어요 그냥잘까요
-
진학사 3-4칸 뜨는데 텔그는 80-90% 뜨는데 이건 뭘 믿어야하는지... 성적표...
-
뭔가 아무리 공부했다쳐도 실전에선 ~을 ~에게 막 이러면서 직관?적으로 푸는데 이게...
-
현우진의 추천 8
라고 하네요
-
어문과 다니는중인데 도저히 못다니겠어서 1년 버리는셈 치더라도 옮기는게...
-
현우짐쌤 시발점 1
이거 그냥 다 똑같은거죠?? 그냥 들어도 되죠?
-
이원준학파분들 0
어떻게 따라가야하는지 강의에서 뭘 얻어가야하는지 알려주세용 독해력 베이스는 조금있어요
-
막 저격하고 그럼(근데 그 저격 수위가 좀 쎄) ㅋㅋㅋㅋㅋㅋ
틀리셨습니다. 현대 논리학에서 양화사 ∀x 를 포함하는 명제는 반드시 x의 존재성을 보장하지 않습니다. "모든 x에 대해 p이다" 라는 명제는 설령 x가 존재하지 않더라도 참이 될 수 있습니다
모든 x가 U에 속한다면, 모든x가 일단 원소로서 존재해야만 하는것 아닙니까?
아닙니다... 그 가정이 틀렸어요. 모든 x에 대해~ 라고 진술하는 명제는 반드시 x의 존재성을 가정하지 않습니다.
∀x(x∈A∪A^c) 이식은 참이라고 하던데요?
네 맞아요. 하지만 '모든 x'와 같이 양화사 ∀를 포함하는 명제는 x가 실존하지 않아도 참이 될 수 있습니다.
아니 제말을 잘들어봐주세요. "모든x가 U에 속한다" 가 참이라면 모든x가 원소로서 존재한다는 말이잖아요
아뇨.. 더 이상 그만 우기세요. 그 명제는 x의 존재 여부와 무관하게 항상 참인 명제입니다
아니 제말이 왜틀렸죠?
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
논리학에서 양화사 '모든' 은 반드시 그 대상이 존재해야만 참이 된다고 보지 않으니까요... 우선 존재해야만 한다<<<<이게 틀린 가정이라는 거에요.
∀x(x∈A∪A^c) 이식이 참이니까 x가 원소로 존재할수 밖에 없다고요
x가 실존하지 않는다는건 애초에 ∀x가 아니란말이잖아요
그게 아니라는겁니다. X의 존재 여부와 무관하게 모든 x라는 표현은 성립할 수 있어요. x가 존재해야만 모든 x라는 표현이 가능하다 보는건 고전 논리학의 관점입니다
x가 없으면 애초에 ∀x가 아닌데요
제말 왜곡하지마세요 모든x가 U에 속하므로 모든x가 원소로서 존재하는겁니다
이 사람 어그로입니다
먹이 주지 마십쇼 선생님
네 그렇게 생각하세요
"x가 없으면 애초에 ∀x가 아닌데요" 이말이 틀렸나요?
어떤원소가 없으면 모든원소라고 할수가 없는데
하.. 왜 그렇게 반응하시죠?
현대 논리학, 특히 20세기 이후의 논리학에서는 '존재'와 '양화'의 개념이 더 명확하게 구분됩니다. 현대 논리학에서의 전칭양화사(∀, "모든 x")는 존재를 직접적으로 가정하지 않습니다. 즉, "모든 x에 대해 P(x)가 참이다"라는 명제가 참이 되려면, 해당 범위 안에서 거짓이 될 수 있는 항목이 없다는 것만을 의미하지, 실제로 그 범위에 속하는 x가 존재해야 한다는 것을 의미하지는 않습니다.
특히 현대 수리논리학에서는 공집합과 같은 개념이 많이 등장하는데, 공집합에 대한 모든 명제는 자동적으로 참으로 간주됩니다. 예를 들어, 공집합에 속하는 모든 x에 대해 P(x)가 참이라는 명제는 공집합 안에 아무 것도 없기 때문에 참으로 간주됩니다. 이처럼 현대 논리학에서는 존재와 무관하게 양화사를 다루는 경향이 더 강합니다.
∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그리고 (모든x에 대해 x가 U에 속한다) 라고할때 어떤x가 없으면 (모든x)라고 할수도 없다고요
위에것도 gpt 답변인데요...
"공집합에 속하는 모든x" 이게 대체 뭔말이죠
잘 읽었습니다. 혹시 '어몽어스가 의심스럽다' 라는 명제도 증명해주실 수 있나요?
하나 더 지적하고 가겠습니다. A라는 집합을 우리 세계에 실존하는 대상이라고 잡았을 때, A^c는 말 그대로 A에 속하지 않는 모든 것이 될 수 있습니다. A^c에 속한다는 것이 반드시 다른 세계에 실존한다는 의미가 될 수 없죠.
A^c에 속한다는 것은 '우리 세계에 실존하는 대상이 아니다' 와 같은 의미가 되고, 여기에는 곧 소설 속 세계와 같이 우리 세계에 속하지만 상상에서만 존재하고 실존하지는 않는 대상들, 우리 세계와 다른 세계에도 없는 대상들, 우리 세계에만 없는 대상들...등등 말 그대로 우리 세계에 실존하지 않는 모든 것들이 들어갈 수 있습니다.
따라서 저 명제가 항상 참이고, 심지어 x가 존재한다 하더라도 그것이 항상 실제로 존재한다로 이어지지는 않습니다....
하........∀x(x∈A∪A^c) 가 참이니 모든x가 U의 원소라는 말이 그렇게 이해가안됨?
그 말은 맞지만 그것이 꼭 x의 존재성으로 이어지지도, 실존성으로 이어지는게 아닙니다.
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
전체집합은 말 그대로 '전체'이기에 님 마음대로 전체를 세계로 한정지으시면 안됩니다.
A가 우리세계고 A^c가 다른세계입니다
그런데 A에 속한다고 반드시 우리세계에 실존한다는건 아니잖아요? 해리 포터나 마블 영화 세계관은 우리 세계에 속하는 것이지만 실제로는 가상의 세계관인것처럼
해리포터가 진짜인 세계가 있을겁니다
해리포터가 진짜인 세계가 있을겁니다
넵!
제가 왜이렇게 고집피우고 난리치는지 이해하실거라 믿습니다
x가 존재한다는 가정이 문제인거 아닌가요? 논리학에 대해선 그리 많이 알지 못하지만 작성된 댓글을 보며 든 생각은 타당성과 건전성에 혼란이 있으신것 같은데... 주장하시는 논증은 타당하지만 x가 존재한다는 명제의 참이 보장되지 않으니 건전성에 결핍이 생기지 않나요? 존재하지 않는 x를 존재한다고 하는 명제의 참 거짓이 문제가 된다는것 같습니다
x가 원소로서 존재한다면 그리고 집합이 세계라면 세계안에x가 있겠죠
우리가 세계에서 관측불가한 것이 실존하다고 설정하신거라면 그리고 그것들이 전체집합내에 존재한다고 가정하신거라면 주장하시는 논증은 타당하다고 생각합니다. 다만 그것이 과학적으로 가치가 있는지는 모르겠습니다.
쿠쿠리 그저 신
님
1=2라면, 3=4이다. 참임 거짓임?
참요