[칼럼] 올해 평가원이 만지작거리고 있을 패
올해 평가원이 만지작거리고 있을 패 - 김지헌T.pdf
김지헌 수학 핏 모의고사 (지헌모) 2025 판매중입니다!!
아래에 칼럼 세 줄 요약 있습니다!
안녕하세요. 올해 오르비북스에서 수학 실전모의고사를 출판하게 된 김지헌입니다.
이번 칼럼 주제는 ‘올해 평가원이 만지작거리고 있을 패’입니다.
사실 이 주제는 제가 3회분의 문제를 출제하면서 가장 많이 고민했던 주제입니다.
평가원이 올해 어떠한 소재를 어떻게 문제에 녹여내어 학생들을 변별하려 할까,
그리고 그러한 경우의 수 중 학생들이 취약한 부분을 대비시키기 위해 난 어떤 문제를 낼 수 있을까.
이번에 문제를 출제하며 나름의 해답을 찾아 이번 칼럼에서 간략하게 소개하려 합니다.
본 칼럼 이외에 추가로 공부해보고 싶은 분들은 배포한 자료를 꼼꼼히 읽어보구, 질문 사항은 댓글로 남겨주세요!
우선 작년 수능에서 가장 난이도가 높았던 22번 문제를 소개하며 칼럼을 시작해보겠습니다.
여러분에게 배포한 자료 1페이지에 22번의 문제가 있으며, 2에서 3페이지에 해설이 있습니다.
해설을 읽고 오신 분, 혹은 충분히 이 문제를 해석해보신 분들이 아래 내용을 읽길 바랍니다.
우선, 박스안의 조건에서 ‘않는다.’를 해석하기 위해 명제의 대우가 참임을 사용하였습니다.
또한, 홀수와 짝수에서 적어도 한 실근을 가짐을 확인하기 위해 귀류법을 사용하였습니다.
이때의 홀수와 짝수가 연속된 정수임을 확인하기 위해 귀류법을 한번 더 사용하였습니다.
나머지 한 실근이 어느 한 실근과의 차이가 1 이하임을 확인하기 위해서도 귀류법을 사용하였습니다.
마지막으로 세 실근 중 중앙값이 0 임을 확인하기 위해서도 귀류법을 사용하였습니다.
이렇듯 이 문제는 어떤 명제가 참임을 보이는 과정에서 고1에 사용되었던 대우증명법과 귀류법을
상당부분 많이 활용한 문제입니다.
수능의 간접 출제 범위인 고1 내용이 이렇듯 많이 나온 것은 우연한 결과가 아닙니다.
평가원은 수능 뿐만 아니라 매년 고2를 대상으로 국가수준 학업성취도평가를 하며,
이때 수능은 9등급제로 학생들의 성적을 나누지만, 학업성취도평가는 4수준제로 학생들의 성적을 나눕니다.
(이때 4수준이 1수준에 비해 개념을 잘 이해한 학생들입니다.)
2020학년도 국가수준 학업성취도 평가의 3번 문항을 봅시다.
이는 배포한 자료 4페이지에 있습니다.
명제 p가 참이므로 모든 학생이 비긴 판이 있습니다.
이때 세 번째 판은 C가 참가하지 않았고, 두 번째 판에서는 승패가 결정났으므로
모든 학생이 비긴 판은 첫 번째 판입니다.
한편 명제 q 또한 참이므로, 어떤 학생은 가위, 바위, 보를 모두 사용하였습니다.
이때 C는 세 번째 판에 참가하지 않았으며, A는 첫 번째판과 두 번째 판에서 주먹을 사용하였으므로
명제 q가 참이 되도록 하는 학생은 B입니다.
따라서 (가)와 (나)는 모두 보에 해당함을 알 수 있습니다.
이 문항을 평가원에서는 변별력이 떨어진다 분석하였습니다.
수능으로 따졌을 때 대략 3등급부터 7등급까지 정답률에서 큰 차이가 없을 문제라는 의미입니다.
반대로 말해 평가원은 명제를 활용한 문제는 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있습니다.
명제와 관련된 개념은 여러분에게 베포한 자료의 5페이지부터 10페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
한편, 2020학년도 국가수준 학업성취도 평가의 5번 문항에서도 이러한 사례를 관찰할 수 있습니다.
(가)는 함수가 아니며, (나)는 상수함수이고, (다)는 일대일함수이므로 정답은 4번임을 확인할 수 있습니다.
한편 이 문제는 오답인 5번 선지를 고른 학생의 비율이 상당히 높은 문제였습니다.
수능으로 따졌을 때 3등급부터 9등급까지 많은 학생들이 동일한 오답을 고른 문제였습니다.
이는 평가원이 함수의 정의를 활용한 문제 또한 난이도를 조금만 높여도 상위권을 변별할 수 있는
문제가 된다는 것을 잘 알고 있음을 의미합니다.
함수와 관련된 개념은 여러분에게 배포한 자료의 12페이지부터 16페이지까지 잘 서술해두었으니
공부를 해두길 바랍니다.
마지막으로 명제의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제와
함수의 개념을 활용하였을 때 나올 수 있는 난이도가 높은 문제,
이렇게 두 자작문제를 첨부하였습니다.
두 문제 모두 메인에 갔던 자작 문제이니, 퀄리티는 괜찮을거에요!
(https://orbi.kr/00068554202 / https://orbi.kr/00043683841)
풀어보고 궁금한 점이 있다면 댓글 남겨주세요.
세 줄 요약 )
1. 평가원은 국가수준 학업성취도 평가를 통해
학생들이 명제 또는 함수의 정의를 활용한 문제를 낼 때 조금만 난이도를 높여도 학생들이 잘 변별됨을 알고 있다.
2. 작년 수능 22번 문제가 '명제' 파트에서 어렵게 냈으니 올해는 '함수의 정의'를 낼 수 도 있다.
3. 배포한 자료에서 '명제' 파트와 '함수의 정의' 파트 자작 예시 문제 올려뒀습니다!
여러분이 수능의 신유형을 대비할 때 도움이 되길 바라며 이만 칼럼을 마무리하겠습니다.
좋아요 하나 부탁드려요! 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
대치 특별전형 합격 가능한가요? 장학 말고 그냥 합격만 되면 되는데
-
안녕하세요 22 23수능 보고 1년간 중앙대 다니다 군대와서 26수능 준비하려고...
-
는 취향차이
-
반수사관학교 ㄷㄷ
-
미적 28 30 맞고 29번 틀린 사람을 뭐라고 부름 11
왜틀렸는지 아직도 모름
-
다음은 국어다.딴거 조금만 하고 강기분만 봐야지 이제
-
어라?
-
논술 개씹노베인데 의논이나 약논 하려면 재능충이어야 함ㅍ? 재능 있는지는 어케 아냐
-
크와아아앙 16
프로틴먹고 독서실 가기 공부하기 싫다
-
신입생들을 위한 아르바이트 추천 [과기대25] [서울과학시술대학교신입생꿀팁] 0
대학커뮤니티 노크에서 선발한 서울과학기술대학교 선배가 오르비에 있는 예비 과기대생,...
-
많이 없을듯 다들 사랑해
-
달도 사과처럼 떨어져야되는거 아닌가 어케 하늘 날고 잇지
-
만남은 쉽고 6
이별은 어려워~~ ㄹㅇ 맞말인듯
-
기상쌤 수업 이번이 처음인데 듣기전까진 수업내용으로 웃기실 줄 알았는데 에스파냐어...
-
수학 노베 0
고1 부터 수학 아예 안했으면 공통수학 1, 2 부터 하는 게 맞는거야? ㅈㅂ 나 4등급은 맞고싶어
-
소신발언 :저 짤 한정 ㄹㅇ닮아보이긴 함..
-
올해 중3으로 올라가는 학생입니다. 지금이야 예비중3이지만 몇 개월만 지나도...
-
레어 질문좀 3
이거 용도가 뭐임?
-
선착순 전형인디 언제 마감되려나여ㅠ
-
나도 부남 하고 싶었는데
-
노래 추천 해주세요 주고 받기
-
꽃츄먹고싶다 12
이상한거 아니니 오해ㄴㄴ
-
답답해 답답해 예비2번은 답답해
-
??? 11
?
-
배너에 광고뜨길래 얼만지 궁금해서 봤더니 월당 2187000원에 컨텐츠비 급식비...
-
와 또큰일났다 5
체중계 고장난거아닌가 이정도 상승세면 올해안에 앞자리 두번바뀌겠는데 방금 하늘보리...
-
?
-
고려대합격 5
고대합격인증합니다 피오르 agent k 컨설턴트님 덕분에 스나 성공햇습니다 감사합니다!!
-
신청해서 발급까지 됐는데 적용방법을 몰라요...
-
사수 의미 없나요
-
영어 수특 vs 기출 15
고3 내신에도 도움될거같아서 수특도 보려는데 제가 아직 기출도 안본 영어고자라서...
-
연휴에도 통역 하느라 피곤한 뫼옹~
-
강대 본관 질문 0
강사를 본인이 선택할 수 있는 시스템인거 같은데 반 레벨 상관없이 강사 다 선택할 수 있는건가요?
-
너무어려워 2컷 아깝농
-
안녕히계세요 8
나아아아아아아아아아아아아아아중에 올게요
-
도니 없다 도니 없어
-
각잡고 모이면 ㄹㅇ 스터디그룹 되겠는데 설대 연세 고려 서강 성균 한양 중앙 경희...
-
대학커뮤니티 노크에서 선발한 한국외대 선배가 오르비에 있는예비 한국외대학생,...
-
허수는 게임못해서 씹덕겜 같이 못한다 선언 피파도 용혁이 보다 못하는것같다 발언...
-
여긴 도대체 얼마를 내야할까 1기라서 장학같은거 나름 퍼주긴 할 거 같은데 강대의대관 따잇하려면
-
전장 되네
-
나 예루살렘~!
-
정확히는 과탐공부량으로 사탐하면 만점 날먹임? 아무리봐도 과탐하려면 국수영...
-
분명 설 연휴고 당연히 가는게 도리인데 이걸 왜 나는 고민하고 있지,, ㄹㅇ 후레 자식인가.....
-
와 큰일낫다… 5
잘멋하면 시대재종 못갈수도있겠는데…? 국어수학만 합쳐도 벌써 5네…
좋은 글 감사합니다! 고1수학 극혐이긴 하지만 참고 공부해봐야겠네요..
혹시 핏 모의고사에도 저런 류의 문제가 실려 있을까요?
함수의 정의를 활용한 예시 문제의 경우, 모의고사에 집어넣기에는 실험적인 문제라 판단했습니다.
하지만 명제를 활용한 예시 문제의 경우, 본 모의고사의 쿠키 문제로 해설지 제일 끝에 첨부되어있습니다.
본 모의고사의 15번, 22번 문항대는 명제를 활용한 예시 문제와 같이 비교적 덜 실험적인 문항들이 많습니다. 학생들이 배워갈 점이 있지만, 동시에 실전성도 대비시키고 싶었기 때문입니다.
자세한 답변 감사합니다! 모의고사 꼭 구매하도록 하겠습니다
감사합니다 ㅎㅎ