국어 비문학 자작 문제(3000덕)
국어 자작 비문학 기술.pdf
오늘은 비문학 중 기술 지문입니다
특히, 10번과 11번은 높은 수준의 추론을 요구하는 만큼 실제 이진법의 성질에 대해 고려하면서 푸시길 바랍니다
(11번 문제는 당연히 평가원이 이렇게 출제할 리는 없으나, 한계를 시험한다 생각하시고 푸시면 될 것 같습니다)
오늘 문제 중 특정 문제는 높은 수준의 추론을 요하고 있는 만큼 잘 생각해보시길 바랍니다
오늘은 어려운 만큼, 4문제 세트임에도 보상을 많이 드리도록 하겠습니다(가장 먼저 각 문제를 맞히신 분께 보상 지급합니다)
I. 2점 문제
8-400 XDK
9-400 XDK
10-1000 XDK
II. 3점 문제
11-1200 XDK
행운을 빌겠습니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼굴 하얘지는 거 여드름 흉터 제거 이런 것도 막 되나요
-
자퇴현역 근황1 5
강기분 언매 공부중
-
사람 아니야ㅠ 밖에 생각이 안남
-
그때면 정리됐겠지
-
이번에는 문과/이과 비슷한 평백으로 한의대 컷이 형성된 것 같은데 이번에 사탐런이...
-
다군 15명 모집 예비 15번 가능할까요 ㅠ
-
의공학 또는 인공지능 진학에는 생명 보던 지구가 나을까요?
-
환불하고 추합 학교 등록하는 거죠?
-
에혀 2
잠이나잔다
-
헌혈을 아무리 해도 20
바늘 꼽는 그 순간은 무섭네요
-
뭔진 모르겠지만 0
눈팅만 해야할것같네요..중립기어
-
제 디시콘 ㅇㅈ 2
-
틈새 ㅇㅈ 6
-
숭실 vs 아주 3
현재 청주 거주중입니다
-
고수들 다 성불하거나 사탐런 해서 이제 작년정도 난이도에 컷은 낮아질듯 아싸
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
음음 역시유용하군
-
수능악귀 결과 4
반수생 ㅁㅌㅊ?
-
지금까지는 줄곧 화작 문학 독서 순으로 했는데 화작에서 언매로 바꿨고 독서를...
-
뭔진 몰라도 상황이..
-
이게 대체 뭐임 2
오르비 무섭노
-
ㄹㅇ
-
무슨일이고 0
???
-
오늘의 수학꿀팁 5
미적분에서 합성함수 문제가 뜨면 그걸 미분 하지말고(본질에서 멀어지는 행위)...
-
독해 실패했음 1
작년 강기분 꺼내서 복습해야겠다
-
빨간맛 나올때 4
초3이었음 정글의법칙에서 빨간맛 부른 멤버 나온 편이 있엇던 기억이...
-
모르겠고 20
애인이랑 저런 갈등도 생길 일조차 없는 내가 패배자다
-
그냥 포기
-
타학교 갈수도 있어서...
-
좀 게임이론식으로 다가가볼게 둘 다 최선의 선택을 한다 가정해보자. 그럼 무승부...
-
모든 일이 다 밝혀지고 뭐라해도 늦지 않습니다 여러분의 일이 아니기에 더더욱 중립
-
문해전 s1푸는 중인데 11
한 챕터당 몇개정도 틀려야 "이 친구 정시파이터로써의 기본이 되었군"정도임?
-
수학학원을 현재 토일 밤 6~10,4~8시로 다니고있는데 아버지가 수학 선생이 뭐...
-
아마 저를 모르는 분이 99%겠죠..?
-
오타니 은가누 8
https://youtube.com/shorts/ZrA8uDIBteQ?si=CH6BT...
-
작년 7모 수학 백분위 99받고 나름 자신있는 상태에서 여름방학때 설맞이 사서...
-
멍청한 놈들아
-
푸는게좋긴한데 그거 못 푼다고 딱히 문제없는듯
-
와 메인 뭐야 1
드라마냐?
-
구하기가 힘들어서..
-
왜 은가누는 지능이 없다 가정하는거야
-
대략적 난이도: 어삼~14번 전반적 난이도 1~3번: 어삼 4번: 11 나머지:...
-
그냥 은가누야
-
수12 Mx 1~2문제랑 Ex는 싹 다 못풀었는데 드릴 풀고 다시 와서 도전하는거 ㄱㅊ나여?
-
오타니가 취해서 소주병 들고 있어도 아무도 못말릴듯ㅇㅇ
-
대학교 채팅방.. 이런거 어떻게 들어갑니까? 시간표는 언제 짜요? 하나도 모르겠는데...
4454?
맞힌 문항: 9
400덕 드리겠습니다!
ㅠ.ㅠ❤️
8번의 4번의 경우, 17-9=8을 계산할 때
17=10001, 9=01001로 나타낼 수 있고 이를 계산할 때 왼쪽에서 두 번째 자리가 계산이 안 되는 문제가 발생합니다
따라서 최상위 비트(맨 왼쪽 비트)에서만 2를 받아내림하여 계산하면 됩니다
-10001-01001=01000
10번의 5번의 경우는 [A]에서 이미 비부호형 정수 이진법에서도 1의 보수와 2의 보수를 사용하면 음수를 표현 가능하다는 식의 진술이 있으므로 옳은 진술이라 볼 수 있겠습니다
1 4 1 5입니다~
![](https://s3.orbi.kr/data/emoticons/2020_foolsday/dangi/029.png)
세상에, 모두 정답입니다!되게 어렵게 출제한 지문이라 누가 다 맞힐까 걱정이었는데, 정말 미국님은 언제나 대단하십니다
특히 10번과 11번까지 잘 풀어내셨단 것에 대해서 놀랍습니다
보상으로 나머지 2600덕 드리겠습니다!
감사해용 ㅎㅎ
정답(마감)
정수 방식 이진법 (비부호형(unsigned) & 부호형(signed))이 아니라
실수 방식 이진법(고정소수점(fixed) & 부동소수점(floating))이 주제였으면
난이도가 걷잡을 수 없이 높아졌을 것 같네요 ㅋㅋ
8
① 동일한 개수의 비트 하에서 비부호형 정수 방식 이진법으로 나타낼 수 있는 최댓값은
부호형 정수 방식 이진법으로 나타낼 수 있느 최댓값보다 2배 더 큰 수이다.
--> 비트의 개수가 총 n개일 때
비부호형 정수 방식 이진법 : 0 ~ 2^n - 1
(000 ... 000 ~ 111 ... 111)
부호형 정수 방식 이진법 : -2^(n-1) ~ 2^(n-1) - 1
(111 ... 111 ~ 011 ... 111)
따라서 비부호형 이진법의 최댓값은
부호형 이진법의 최댓값보다 2배 더 큰수가 아님.
9
④ ㄱ(오버플로)과 ㄴ(언더플로) 모두 제한된 비트의 개수로 인한 이진법의 경우의
수의 한계와 숫자가 가진 무한한 특성 간의 괴리로 인하여 발생한다.
--> 표시할 수 있는 자릿수는 유한한데 숫자는 무한하므로 ㄱ, ㄴ이 발생할 수밖에 없음.
10
① 동일한 개수의 비트 하에서 1의 보수를 적용하면 일반적인 부호형 정수 방식
이진법을 통하여 도출 가능한 수의 최솟값보다 더 작은 값을 나타낼 수 있다.
--> 비트의 개수가 총 n개일 때
일반적인 부호형 정수 이진법 : -2^n ~ 2^(n-1) - 1
1의 보수가 적용된 이진법 : -2^(n-1) + 1 ~ 2^(n-1) - 1
( 000 ... 000 = 0, 111 ... 111 = 0 )
( 011 ... 111 = 2^(n-1) - 1, 100 ... 000 = -2^(n-1) + 1)
따라서 일반적인 부호형 이진법보다 더 작은 값을 나타내지 못함.
11
⑤ ⓐ(게임 종료 조건이 구동되지 않는 경우)의 상황이 구현되지 않을 때,
이 게임을 통해 얻을 수 있는 점수의 최댓값은 127점이고,
이 게임을 통해 도출가능한 최종적인 점수의 값의 모든 경우의 수는 131이겠군.
--> 8비트 부호형 정수 방식 이진법을 사용하므로 점수 최댓값은 2^7 - 1 = 127점
점수가 0 이상일 때 게임 종료 : 0 ~ 127점 모두 가능
점수가 0 미만일 때 게임 종료 : -1(잡초x1), -2(감자x1 + 독버섯x1), -3점(독버섯x1)
따라서 도출 가능한 최종 점수의 모든 경우의 수는 128 + 3 = 131가지가 됨.
![](https://s3.orbi.kr/data/emoticons/oribi/037.png)
오늘도 완벽한 해설 정리 좋습니다, 오늘은 어려운 제재인 만큼 1000덕 드리겠습니다10번의 1번 선지가 적절하려면 2의 보수로 바꿔주면 됩니다
예를 들어, 8비트 부호형 방식 이진법에서 -127은
1의 보수를 적용하면 10000000
2의 보수를 적용하면 10000001로 표현되는데
이때, 2의 보수에 한해서 1을 감하여 2의 보수가 적용된 10000000을 -128로 사용할 수 있게 됩니다
[A]의 (1의 보수)+1=(2의 보수)의 서술도 그냥 넘어가서는 안 됐었던 거였죠
조사할 때에는 정수 방식 이진법에만 주목했는데, 올인원님 말씀대로 실수 방식 이진법도 상당히 흥미로운 주제인 듯싶네요, 한 번 알아보도록 하겠습니다
항상 감사드립니다
대중의 통제는 무슨 의미인가요?
-> ‘과학의 민주화’
왜 대중의 통제가 필요하다고 파이어벤트는 주장하나요?
->패러다임은 과학자들만의 것으로 여겨지는 데, 이는 과학의 독재 즉, 민주성이 훼손되며 대중의 과학의 진보에 대한 기여를 무시하는 것이나 다름 없기 때문이다.