[자작 문항] 6평 대비 22번으로 냈던거
갠적으로 모의고사 하나 만드는 거 보다
감질나게 자작문항 하나하나 올려서 맛 보여주는 게 뭔가 조회수 더 높은듯....
사람들이 관심을 더 많이 가져주는 느낌....
사실 이 문제의 원래 주려던 조건은 f(0)=/=0이었는데....그러면 문제 난이도가 꽤나 상승하는 느낌이 없잖아 있을 거 같아서....문제가 무슨 말하는 지 감을 못 잡겠다고(미리 친구에게 풀려본 결과)하길래....
넵....241122를 모방했습니다....저도 문제 만들면서 ptsd가 심하게 오던ㅋㅋㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
한번씩만 축하 좀 해주면 감사하겠습니다 오르비언 여러분 앞으로도 잘 부탁드려요!!
-
사탐 메디컬.. 4
한의대 약대만 목표로 사탐으로 변경해서 한번 더 도전해보려 합니다. 과탐선택시와...
-
올해 욕먹겠지 ㅋㅋㅋ
-
할 것도 없이 하루가 녹아버리는데 시간은 드릅게 안 감
-
텔그메타인가요 6
사과대를내놓아라.
-
하나도 안되네요 ㅠㅠ
-
도란아 잘해보자.......
-
기대하면서 잤는데 이젠 뭘 기대하면서 자지
-
설마 내가 아무리 멍청해도 객관식 18번 칸부터 16번 17 번 마킹하고 원래...
-
미적보다 훨 낫고 공부량도 적긴한데 미적보다 재미도 덜하고 무엇보다 특유의 찝찝함이 너무 싫음.
-
자야징 1
-
목표는 중경외시입니다 사문은 무조건 할겁니다 나머지 하나를 정법할려했는데 좀 고민이...
-
ㅇㅇ
-
조대 의대는 2퍼네요....ㅋㅋㅋㅋㅋㅋ
-
올수 수학 72점 (미적 28 29 30틀) 국탐 만점 영어를 조져서 재수하는데...
-
뭔가 어느 순간 갑자기 잘되는 느낌 초반에 강의 들으면서 분석하고 기초 쌓으니까...
-
나 텔그좀 봐줘 10
이거중에 어디 하나는 가능하겠지? 제발 ㅋㅋㅋ
-
과탐 조언좀요 4
설약 지망하는 08입니다. 전글에도 올렸지만 한번더 질문드립니다 ㅜ 생1은...
-
비유전은 백호고 유전은 한종철이라는데 누구 들을까요?
-
다같이 밤에 맥주에 치킨먹고 디저트로 케이크까지 먹으니까 진짜 너무행복하다
-
내신 확통임ㅇㅇ
-
그외의 분들은 나가 주세요
-
ㅇㅈ 5
저이렇게생김ㅇㅇ
-
'의대생'은 모르겠고 사직한 '전공의'들이라면 치대반수 2
나쁘지 않은 정도가 아니라 아예 탁월한 선택일수도 있다는 생각이 듬.. 이들의 경우...
-
제가 수능최저 3합7을 맞춰야하는데 메가 등급컷 기준 언매, 미적이 다 표점이...
-
예를 들어서 25/36 + 5/21 이런 거 할 때, 36 이랑 21의 최소공배수를...
-
빨갛게빨갛게 물들었네~
-
돈 벌어 올껭
-
제가 알기로는 공대가 완전 남초라는데 왜 여자들한테는 인기가 없나요?
-
주변에서 자꾸 수분감 풀고 제가 한번 풀어봤는데 조금 꼬이는것을 얘는 풀고.. 근데...
-
미적 30번 만약 곱하기 자연수를 줬다면 정답륭 몇% 예상? 6
저는 한 4% 장답률 12% 말도 안됨 ㅋㅋㅋㅋ
-
사실 행사 자체를 간 적이 없음뇨..
-
내일 대구에 놀러가요 19
기대되요 대구는어떤곳일까
-
단일대오로 똘똘 뭉쳐서 정부에 맞서도 모자랄 판에 지들끼리 갈라치기하면서 싸움.
-
후..일단은 1등급 받으면 그때 하도록 하죠 제가 아직은 종합으로 안나와서 극단적인...
-
아니 내가 개때잡 마무리 하고 수분감 들어갈라그랬는데 현우진T커리는 연계가 좋다고...
-
제 텔그 보실래여 35
중앙대는 여기까지만...!!!
-
부엉이 7
시대북스 남은 포인트로 삼 이제 나도 부남인가?
-
논술 조기발표 1
성대말고도 하는곳 있나요?
-
생윤 문제가 깔끔하게 안풀리는데 공부 방향 잡아주세요 0
분명 누가 어떤 가치관이고 뭔 내용인지는 아는데 제가 공부하는 책에서는 없는 말이...
-
2000만늘리면
-
의대 메타만 되면 평소에 오르비 하지도 않던 노프사 옯붕이들 존나 많아짐 6
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
팔로워도 얼마 없는데 왜 저리 높아
-
제가 이틀간에 걸쳐서 국어, 수학 등급컷을 예측해드렸습니다. 그런데 댓글을 보니...
-
ㅇㅈ 2
청와대 다녀옴.
-
닥터 키도리 구경하고가샘
-
안녕하세요, 고려대학교 재학생 대표 커뮤니티 고파스의 새내기 맞이단입니다!!...
-
킬러배제같은거개무시하고불지르면재밋겟다
-
두려워요 3
한게 없는데 갑자기 팔로워가 생길때…
-
ㅇㅈ메타를 열거라 12
이건명령이다 여붕이들이보고싶구나
계산이 0에 수렴이라 맘에 듦
그냥 계산하라고 할 걸 그랬나....그래도 작수22는 해석만 되면 계산이 많은 편은 아니긴 했어요
+0 제외 둘중 하나 미지수로 줘도됨요
이것도 과조건이라면 과조건이라서
사실 이 생각을 못한 것도 아닌데....글에서 말했듯이 말귀를 못알아 먹겠다고 뭐라 하길래...그냥 넣음뇨....
사실 저것도 함수 g(x)=~의 그래프가 로 적는게 맞는데 내가 실수했다 카더라
앞에 함수 있는데 굳이 그래프라는 말을 뒤에 붙여야 되던가....
'함수가 사분면을 지난다' 라는 말은 어색하지
으음 그렇군
이로운에서 비슷한거 봤는데 고트들은 생각이 비슷한가봅니다 ㅋㅋㅋ
이로운에도 이런게 잇었나....23에는 없었던 거 같은데...
2개의 사분면 지나는거 작년꺼수2 풀면거 봤음뇨이
비슷한게 아닌가 아님말고..
글쿤용....주의해서 만들어야겠다....
41
땡
아 사분면이구나
뭔가 -2랑 0을 둘 다 주는 게 과조건같아서 바꿔봤음
이렇게 만들면 더 ㅈ같아질 수도 잇구나....
65???
땡
암산실패 ㄲㅂ
161??
늦었네 ㄲㅂ
161
오 정답
241122같은 느낌 진짜 받았어요
그래서 저도 나름 잘 만들었다고 생각함뇨ㅋㅋㅋㅋ
두개의 사분면만 지난다=원점을 지난다 맞나여??
152/9 맞나요??
정확하내요
(t, f(t))에서의 접선 g(x)가 두 개의 사분면만을 지남
--> g(x) = ax or g(x) = a (a ≠ 0)
(-2, f(-2))에서의 접선이 원점을 지남
& f'(-4/3) = 0 & f'(x) ≥ 0
--> f(x) = 3(x + 2)²x + 4x
∴ f(2/3) = 152/9, p + q = 161
캬ㅑㅑㅑㅑ