미분에 대하여
오랜만에 공부 얘기 좀 써 보려고 합니다.
제목 그대로 미분에 대해서입니다. (제가 제목 짓는 센스가 없어서...ㅋㅋ;;)
“미분계수란 무엇인가요?”라고 물으면 아마 “접선의 기울기”라고 대답하겠죠?
맞는 말이긴 하지만, 제 경험에 비추어 보면, 여기서도 찝찝함이 조금 남습니다.
“왜 접선의 기울기를 궁금해하지? 애초에 미분은 왜 하는 걸까?” (궁금해하세요.)
이 물음에 대한 저의 답을 이야기하고자 합니다.
우리가 모르는 함수 가 한 점 를 지난다고 합시다.
이 정보만을 갖고 우리가 에 대해서 무엇을 더 알 수 있을까요?
우리가 정확히 알 수 없는 때로는 복잡하고 때로는 추상적인 이상한 함수라도 우리는 이 함수를 알아야만 한다고 합시다.
결국 우리는 이러한 함수를 우리가 “통제하고 다루기 쉬운 꼴”로 “근사”해야 하겠지요.
여기서 두 가지를 명확하게 해야 합니다.
1. 우리가 통제하고 다루기 쉬운 꼴은 무엇인가?
2. 어떠한 근사가 좋은 근사인가?
우리가 통제하고 다루기 쉬운 대표적인 꼴은 "선형", 일차함수가 될 것입니다.
즉, 우리는 미지의 함수 를 아주 좋은 일차함수로 선형근사하고자 합니다.
그렇다면 어떠한 직선이 좋은 근사가 될 수 있을까요?
함수 가 점 를 지난다는 조건에 의하여 기울기가 미지수인 직선을 생각해 봅시다.
그러면 원래 함수와 당연히 오차가 생기겠지요. 그 오차를
라고 합시다.
아래 그림을 보면, 점와 멀어질 수록 일반적으로 원래 함수와의 차이는 커질 수 있겠지요.
하지만 에 가까워질 수록 그 차이는 의 값에 상관없이 항상 0에 수렴하게 됩니다.
그럼 여기서 가 어떠한 값을 가져야 차이가 0으로 가장 빠르게 줄어들 수 있을까요??
위의 두 번째 물음인 좋은 근사에 대한 답이 바로 다음과 같습니다.
좋은 근사 = 원래함수와 선형근사시킨 직선의 오차가 가장 빠르게 줄어들도록!
직관적으로, 오차가 줄어드는 속도가 가장 빠른 직선이 가장 좋은 선형근사라고 할 수 있겠습니다.
이제 우리는 오차가 가장 빠르게 줄어들도록 직선의 기울기를 결정해야 합니다.
이때 0으로 줄어드는 속도가 빠르다는 것은 극한의 언어를 빌려와서 설명할 수 있습니다.
똑같이 0을 극한값을 갖더라도 함수식이 갖는 인수의 개수가 더 많을수록 더 빠르게 0으로 수렴할 수 있겠지요? (조금 더 엄격하게, big O notation, little o notation을 통해 설명해야겠지만 넘어갑시다.)
0이 되는 인수를 하나 제거하더라도 여전히 0으로 줄어든다면 속도가 더 빠르다고 할 수 있겠습니다.
이것을 수식으로 옮겨 적으면 다음과 같겠네요.
우리가 찾은 기울기가 다음과 같게 됩니다!
우리는 위 극한값이 되는, 선형근사시킨 직선의 기울기를 "미분계수"라고 부르기로 약속한 것입니다.
그리고 이렇게 선형근사시키는 행위를 "미분"이라고 약속하며,
이런 최적의 선형근사가 가능하다면, 즉 위의 극한이 존재한다면 우리는 "미분 가능"하다고 부릅니다.
긴 글 읽어주셔서 감사하고, 여러모로 조금이나마 도움이 되셨길 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좋아요 0 답글 달기 신고
-
좋아요 1 답글 달기 신고
-
아직도 이해가 안된다 23
안읽씹의 심리
-
다들 그럼 뭐하는건지 쓰고나가셈
-
댓글 등의 반응은 현저히 줄어드는데 조회수는 개빨리 늘어남 ㅋㅋㅋㅋ 뭔가 있는 듯
-
중기:이거 불법입니다!
-
요즘 오르비는 다들 일찍 자는 바른 어린이들이라 3시에 하면 또 재미 없음 ㅋㅋ
-
영어 2,3 등급 차이 많이 심한가요? 예비 고3인데 그냥 영어 2등급까지는 띄울...
-
연애하고 싶다
-
고2인데 올해 모의수능 봤을때 물리3(찍맞1개) 지구5(실수 많이 함..서바 풀면...
-
.......
-
고3 때 김동욱 일클 조금 들었었는데 그때는 조금 추상적으로 느껴졌거든요(방식은...
-
진짜 오랜만에 하는 ㅇㅈ인 듯 ㅋㅋ 차피 어릴 때라 신상 털릴 일은 없어서.. 오랜만에 ㅇㅈ해봄
-
언매 0틀 87점인데 3등급 뜨면 진짜 저는 이 세상에서 존재하지 않을지도...
-
경희대 될까요?
-
모기야 제발 5
잘라는데 앵앵거려
-
내전휴ㅡ번호어
-
뭔가 요즘 그냥 11
내 무능함에 삶 자체의 동력을 잃은느낌
-
ㅇㅈ 3
그렇습니다
-
킁킁
-
뭐지 진짜
-
다 열심히 연계 공부했는데 저 셋중에 하나도 안 나온 게 너무함 이동하는시간...
-
ㅇㅈ 6
영정사진 ㅇㅈ
-
ㅇ 2
-
95인지 97인지 잘 모르겠음 37이랑 41 틀렸는데 41을 2랑 3이랑 고민하다가...
-
팔로우 쌀먹을 시전하려는 나쁜 인간들!
-
당연히 수학황은 아니지만 낮은 등급대이신 분들꼐는 제가 겪은 시행착오가 조금이라도...
-
후회 하고있어요 3
우리 다투던그으날
-
심찬우 강민철 김승리 … 고민됩니다ㅜ
-
ㅇㅈ 막차 10
펑
-
진짜 금시초문인데 또 완전 개소리같진 않아서 경험자분들 와서 알려주셈
-
바로.. 수능 샤프 모으기 내년엔 무슨 색일까?
-
서울대 체대 1
수능끝나고 체대입시 준비하면 현실적으로 불가능한가요? 서울대체교과 넣고싶은데 입시...
-
여러분들은 무엇이 문제라 생각하십니까 512분의 조사동안 무엇이 들통난 걸까요
-
1명이 중복으로 다는 건 하나로 취급함 사회실험
-
모두 잘 살아라 6
난 잘 못살겠다 장례식은 지금 열음 굿다이노
-
난빌런 << 이새기는 걍 노력을 안함 ㅋㅋ
-
아일릿에 입덕해보는게 어떨까요?
-
난 딱 두 번 그래 본 적 있음 딱히 그 사람한테 얘기하진 않았었는데... 흠
-
전에도 덕질 몇번 해봤긴 하지만 올 초에 어떤 가수에게 정신이 넘어가고 진짜...
-
인설의 목표 사반수 선택과목 추천좀요 국영 그럭저럭 하고 수학은 1컷에서 중반정도...
-
더코 왜필요함? 14
확인하는법 몰라서 가만히 있다가 오늘 알았음ㅋㅌㅋㅌ 7000정도라고 뜨는데 이거로 뭐함?
-
쎈+뉴런 조합이 은근 좋은거같음 뉴런 자체 문제가 조금 부족한것도 있고 난이도...
-
과탐2개봤으면 4
강대 시대같은 곳에 인문전형으로 지원 안될까요? 25수능 과탐 두과목 봤고 둘 다...
-
몇명있았을까
-
ㅇㅈ 2
완
-
인스타도 그냥 내가 맞팔하고싶은사람만 하면 안되나? 싶음 N수할때 나한테 연락해준...
-
이거 가시나요?
-
아 ㅇㅈ메타였네 4
이걸 탑승 못했네 아쉽
-
올해는운동도열심히좀하고
-
수학 2등급이상만 22
올해수능수학 공통에서만 15,20,21,22를 못풀었거든요..뭐가 문제일까요...
-
날지켜봐줘