[수학] 기니디(합답형)가 주관식으로?
안녕하세요
수학강사 이대은입니다.
오늘은
작년에 나름 이슈 중 하나였던
우주최초로 주관식에서 합답형이
출제됐던 2023년 6월 21번을
소개하려 합니다!
단순히 해설을 소개하는 것이 목적이 아니므로
글을 꼭 끝까지 읽어주세요!
문제부터 보여드릴게요!
저는
ㄴ선지
를 중심으로 글을 적을테니
아직 안 푸신 분들은 ㄴ선지를 꼭 해보고
읽어주세요!
이 문제의 자세한 해설은
제가 직접 해설한 영상을 하단에 첨부하니
궁금하신 분들은 꼭 보세요!
얻어갈 부분이 반드시 있을 거에요. :D
먼저
작년 이슈였던
고등수학의 중요성에 대하여
알고 계시나요?
뭐
근의 공식, 근의 분리, 곱셈공식 등
중요한 내용들은 많은 학생들이
이미 인지하고 있죠.
근데 저는
고등수학에서 다루는 내용 중에서 특히
귀류법
에 대하여 강조를 하고 있습니다.
정말 많은
준킬러 이상의 난이도 문제들에서
사용되는 도구이므로
나중에 기회가 되면 또 예시를 소개할게요!
자 본론으로 들어가겠습니다!
선지 ㄴ을 들어가기 전에
상황해석을 먼저 해보면
이고
선지 ㄴ을 보면
이다.
이 선지를 해석할 때
귀류법을 사용하면
당연하게 참임을 알 수 있습니다!
먼저
귀류법이란
이다.
ㄴ선지에 귀류법을 적용시키면
이다.
위에서 해석한 항등식
에서
좌변은 값이 증가하고,
우변은 값이 감소하게 된다.
따라서 항등식이어야 할
등호관계가 성립하지 않는 것을 알게 되고,
모순이므로 귀류법에 의해
ㄴ선지가 참임을 알 수 있다는 것이
이 문제의 풀이법입니다!
*자세한 해설
늘 하는 이야기지만
이 문제는 절대
수학1 지식만을 이용하여 풀리지 않아요.
또한 이 풀이를 완전히
이해 및 암기를
했더라도
다른 지수로그함수의 모든 문제들이
다 풀리는 것은 아니죠.
따라서 이런
새로운 풀이가 존재하는 문제들은
단순히 문제를 경험한 것이
절대 고득점으로 이어지지 않습니다.
항상 기출분석은
분석이란 말에 알맞은
방법으로 하셔야 해요!
여기서부턴
짧게 5/4에 진행하는
어린이는 아니지만 어린이날 기념
특강에 대한 안내 및 홍보하겠습니다!
수강이 고민되시는 분들을 위해
아래에 수강후기 링크 첨부하니
한 번 보시는 것도 선택에 도움이 될 것 같네요!
일시
5/4 2:00-5:30 (현장/비대면 다 가능)
강의주제
수학2 함수의 극한 총정리
및
수학 공부법
수강대상
단과 중간합류로 1단원 완성도가 떨어지는 학생
함수의 극한 주요유형 정리가 필요한 학생
수학 공부법에 대한 고민이 있는 학생
수강료
현장 50000원, 비대면 35000원
교재
자체제작 교재 (교재비 무료)
어린이날 특강 수강신청링크:
https://academy.orbi.kr/intro/teacher/509/l
정규반 수강신청 링크
https://academy.orbi.kr/intro/teacher/466/l
수학 공부법 1회 특강 신청링크
https://academy.orbi.kr/intro/teacher/503/l
공부법 특강 수강후기
1. https://orbi.kr/00067814750
2. https://orbi.kr/00067822140
3. https://orbi.kr/00067823604
수학강사 이대은
현) 오르비학원
현) 대치명인학원 중계
전) 여주비상에듀기숙학원
*2023, 2024학년도 수강생수 전과목 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
글 소개나 성적인증은 전 편에 있습니다. 원래는 n제나 모의고사 시즌에 쓰려고...
-
누가 대성 qna에 어그로 끌길래 봤는데 이투스 신규 강사 실루엣이 살짝 느낌이...
-
내일이 기대된다 2
-
수험생활동안 운동은 19
필수인가요? 하루 순공시간 +1시간과 하루 운동 1시간 중 뭐가 장기적으로 수능 잘...
-
인스타 차단한것처럼 걍 내가 시른사람이구나 하구 쿨하게 넘기면됨?
-
옮밍 안당하는법 7
친구가 없으면 된다....!!!
-
흑흑
-
ㅈㅉㄴ
-
입시알못인데고대공대가능?ㅈㅂ
-
정승제t 개때잡으로 진도 나갈건데 내년꺼 들으면 너무 늦어질거 같아서 이번년도껄로...
-
나같은 허수는 헌신짝
-
수학 조언부탁드립니다! 16
고2 자퇴생입니다! 지금 수1, 수2, 확통 하고 있는데 너무 어려워서요.. 모고는...
-
특히 미니의대에 병원도 탄탄하지 않은데 증원이 터무니 없이 많은 곳(대가, 동국,...
-
오르비언중에 한명이 31
내 실친같아서 조금 무서워짐
-
요새 늙어서 그런가 잘 안 일어나네요...
-
영어 성적 변화 20
78-95-97 수능때왤케잘봤지 쓸모도없는데
-
화작 백분위 96 확통 백분위 85 영어 2등급 한국사 1등급 동아시아사 백분위...
-
호날두일생쓰는거임 성경처럼
-
4월 5월에 가려고 했는데 힘들려나요?
-
나 3개가능핳듯 ㅎㅎ
-
모든 기전력 크기와 저항값은 각각 V, R로 동일하다. 특정 저항 내에 흐르는 전류...
-
맥주는이미 준비완료
-
복권 되면 그 깊고도 넓은 은혜 잊지 않겠음
-
참고로그런좋아함은아닙니다 그래서기분이좋네요
-
작년껀 잘 기억 안나는데 6모 2컷 9모 3등급 수능 83점 이때도 83점이...
-
야 다들 잘자라 6
난 애니보러갈거다 좀 박력있었나
-
진짜 겨울이란 건데 그럼... 앞으로 존나 춥겠다
-
ㅇ
-
내옆에는 다쓴 휴지뭉치 밖에 없네....
-
서성한 가능한가요..??
-
아 먼가 두껍고 보드보들하고 따뜻한 잠옷 사고 싶다는 생각 들었는데 11
차피 며칠 입을수 없다는 사실이 떠올라버림 ㅠㅠ
-
힘들까요..? 어디까지 지원 해볼만 할지 궁금해요..!
-
영어1맞고가면배가아프기때문
-
오 4
블라됐다!
-
요번에 혼자 알바하면서 반수했다는데 대박남. 전적대가 한의대인데 의대 성적 받아서...
-
사문 옛날 도표기출 풀때 ? 이게 왜 어렵다는거지 생각들면 경제 하면됨 무조건 고득점 간응
-
궁예질 하는 중 0
EYE IS ONE
-
짧다면 짧고, 길다면 긴 2년이란 시간 동안 짝사랑했다 2학년 여름 어느 날,...
-
물론 칼럼올릴 실력도 아닌것같긴 해요.. 네
-
22도 어디가쒀
-
진학사 1
진학사 지금 나오는 대학별 환산점수가 사과탐 가산점 반영한 점수인가요..?? 너무...
-
사문 44 45 47(84 92 98예상) 한지 42 42 48(9초반 80...
-
언제든 나가서 개원할 수 있으니 자유롭다 (O) (대부분 전문직 공통) 개원의는...
-
무휴반 주의사항 0
반수한다는 걸 티내면 안됨.. 이해하는 사람들도 있겠지만 티가 나면 알게 모르게...
-
법적으로금지해야..
-
질받 8
야해요
-
지에스25 마롱 티라미수라던가 라라스윗 티라미수라던가 먹어본사람 있음?
-
쌍욕한사람한테서 편지옴 45
-
아카네빵 맛있던데 안타까움
첫번째 댓글의 주인공이 되어보세요.