극한 계산 때 주의할 점
안녕하세요. 여기서 이런 칼럼글은 어째 처음 써 보는 것 같아 시작을 뭘로 해야 할지 애매하네요...
극한 문제를 풀 때 여러 가지 편법이 있죠. 로피탈이라던지 테일러 급수라던지...
이런 방법을 쓸 때에는 다 전제조건이 있어서 헷갈린다거나, 아니면 이게 교육과정 밖이라서 쓰기 싫다거나 하는 이유로 순수하게 극한만으로 풀려는 분들도 요즘 많이 보입니다. 좋은 학습방법이죠.
다만 순수하게 극한만으로 풀 때에는 여러 주의할 부분이 있습니다.
1. 극한 계산을 할 때에는 식 전체를 한 번에 보내자.
잘못된 예시를 몇 개 들고 와 보겠습니다.
이 값이 e로 수렴한다는 것은 자명합니다. 그런데 밑에 있는 x를 먼저 0으로 보내고 지수를 0으로 보낸다면 어떻게 될까요?
밑의 x를 먼저 0으로 보내면 밑은 1이 될 것입니다. 거기다 1/0=무한대 제곱을 해 봤자 1이겠죠.
또 밑변의 길이가 1인 이등변삼각형의 높이를 계산한다고 해 봅시다.
높이를 n이라 두면 빗변의 길이는 루트(n^2+1)이겠죠. 빗변과 밑변 사이의 각을 세타라 하면 코사인법칙에 의해 다음 식이 성립합니다.
여기서 세타를 0으로 수렴시키면 어떻게 될까요?
단순히 세타만 0으로 수렴시키면 3/4 = 0이라는 이상한 식이 되어버립니다. 여기서 문제는 n이 세타에, 혹은 세타가 n에 종속된 변수라는 거죠.
n과 세타는 위의 관계식으로 묶여 있습니다. 따라서 세타가 0으로 가면 자연스럽게 n도 0으로 가게 되는 거죠.
이를 무시하고 그냥 한 변수만 수렴시켜 버리면 위와 같은 오류가 발생하게 됩니다.
2. 우리가 알고 있는 극한값을 무지성으로 대입하지 말자.
이건 위와 연결되는 내용입니다.
이것은 너무도 유명해서 다들 외우고 쓸 겁니다. 그리고 우리는 테일러를 좋든 싫든 조금은 맛보고 문제를 풀어봤죠.
그래서 위의 식이 포함된 식에서 우리는 종종
를 별 생각 없이 대입하게 됩니다.
그런데 이게 대부분의 경우 옳지만 항상 옳지는 않죠. 예를 들자면 아까 제가 답해준 글에서의 문제가 있겠네요.
여기서 tan x를 x로 단순 치환하면 위아래를 x로 나눠서 (1-1)/x^2로 바꿀 수 있겠네요. 그런데 이렇게 풀면 분자 0, 분모 0인데 더 이상 어떻게 바꿀 수도 없습니다. 잘못된 풀이이죠.
저 식은 사실 정규 교육과정 내에서 어떻게 풀긴 상당히 까다롭습니다. 0/0꼴이므로 로피탈을 반복 적용해서 풀던가, 아니면 테일러 급수의 3차항까지 근사해서 1/3이라는 답이 나옵니다.
질문하신 분은
까지 변형한 뒤 위아래를 x로 약분했죠. 여기서 문제가 생깁니다.
2tan x/2는 단순히 근사하면 x가 되지만 이걸 x로 취급해서 분자를 x로 묶어도 된다는 것은 아닙니다. 이건 위에서 이야기했던 특정 항만 먼저 수렴시키면 안된다는 것에 어긋나는 거죠.
이 식을 로피탈, 테일러 급수 없이 푸는 방법은 다음과 같습니다. 이거 말고도 다른 풀이가 있을 수 있지만 전 모르겠네요...
상당히 접근법이 어렵습니다... 네.
그래서 이 문제는 테일러 급수 3차근사식을 통한 접근을 추천드립니다. 로피탈도 사실 3번이나 써야 해서 상당히 더럽거든요.
여기까지 생각나는 대로 끄적여봤네요.
사실 저는 반쯤 무지성으로 테일러 급수를 대입해서 푸는 편입니다. 분모 분자 차수 비교해서 거기에 맞는 수준까지 대입하는 방식으로요. 물론 테일러 급수 이용하는게 더 복잡한 경우도 많고 해서 일반적인 풀이 기법도 연습하지많요.
조금 길어졌네요. 부족한 글 봐주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
레어 첫 구매 0
예쁘심 ㄹㅇ
-
어우
-
알람 근황 0
-
군필 9수생 0
-
남1여1
-
배고프다 1
흐아아아아
-
흠.
-
된건가 0
-
나도 ㅈㄴ특이한사람들만 만나는구나 주2회6시간...
-
어 다뺏어 1
.
-
누구랑 사귀어야할까
-
분명 1000얼마였던 레어가 정신차려보니 몇만단위 찍히는 거 보면서 이게 도박이구나 싶다
-
금요일에 나오면 어쩌자는거
-
노잼 3
이제 질림
-
덕코 쌀먹중 1
개굴
-
한거같은데 지금 왔네
-
1) 물2도 라이브반 있나요? 2) 작수 미적 백분위 98인데 누구 수업 추천하시나요?
-
레어 좀 0
내꺼야 가져가지마
-
한 5명 동시에해서 부자가되버리는거야
-
소중한 유품이라고.
-
학원 병행 인강 0
개념원리로 병행할까요 시발점으로 할까요 모르는 부분만 인강 들을까 생각중입니다
-
예비고2입니다. 고1 내신은 4~5정도 되고, 모고는 영수는 1등급이라 정시하려고...
-
연대 펑/폭 0
공대/이과학과중에 연대 펑크난 학과 폭발한 학과 어디어디인지 궁금합니다 제 점수로...
-
캬 4
-
왜뺏어가!!!!!
-
나 과외잡았는데 20
과외생부모가 아이 오래잡고있어달래서 주2회 회당 6시간 160잡혔는데 이거 좋은건가?
-
다내꺼야 저리가 4
다내꺼야
-
카리나 이쁘다 0
흐흐
-
좀
-
소중한 유품이라고.
-
라멘먹고 영화보고 까진 정했는데 보통뭐해요?
-
댓글 투견장 열릴까봐 무서워잉
-
레어뺏음 5
-
ㅈㄴ정신병자같은데 이렇게라도 대화하고싶어... 하
-
벅벅 덕코주세요.
-
내레어훔쳐간새꺄 2
다시내놔
-
덕코 0
나도 주라
-
재밋다 으헤헤 2
-
이게쌀먹이지
-
도데체 어디가 폭난건가요 ?.?
-
ㅋㅋㅋㅋ
-
4탕 뛰는게 한계겠죠
-
연대상경 추합 0
얼마나 돌 것 같아요?
-
레어 다량 구매 0
보이시나요
-
ㅠㅠ
-
레어 보이냐 2
-
마구마구뺏기는중 0
사실 레테크야
-
으럇으럇
-
저메추 부탁드려요
굿굿
이해가 잘 안되는데요, 왜 저 4L에서 2x는 x로 바뀌고 바로 밑에서 3L로 바뀌고 x가 tanx로 바뀌는건가요?
아 오타냈네요... 지적 감사합니다! 수정하겠습니다!
3L은 4L에서 왼쪽 L을 뺀 거에요
평균값 정리로 마지막거 풀수 있어요