26살에 재종반 수학 대표강사, 3년 간 30년 치 기출문제 폐관 수련 후기 2탄
1탄은
안녕하세요. 반갑습니다. 오르비 아이디에 등록한 전화번호를 개인적으로 사용할 수 없게되어 탈퇴했는데... 탈퇴하고나니 댓글이 많더라고요. 암살 당한것은 아닙니다. ㅎㅎ
2탄 시작합니다.
=====================================================================
[해설지가 뭐 이래...? 해설이 아니라 계산지 아닌가....? (feat. 수능 13번)]
2024학년도 수능 13번
도형 문제의 풀이는 연역적으로 풀지 않으면 항상 헤매게 되는 문제입니다. 그 이유는 기하에는 왕도가 없기 때문이죠?ㅎㅎ 운이 좋으면 풀리고 운이 안좋으면 안풀리고, 잘 보이는 날은 풀리고 잘 안보이는 날은 안풀리고...
그런데 수능 문제를 이런식으로 출제하지는 않겠죠? 운이 좋으면 풀 수 있있고 그렇지 않으면 풀 수 없는? 평가원에서 정해놓은 성취기준은 그런 것일리가 없습니다.
EBS의 해설을 보겠습니다.
갑자기 선분AC의 길이를 구합니다. 왤까요? 이 해설지는 사실 '해설'이 아닙니다. 문제를 해설하고 있는 것이 아니라 답을 향해 가는 풀이 또는 계산집이죠. 사실 선분AC의 길이를 구해야하는 이유를 설명하고 구하기 시작해야하는데 그냥 대뜸 구해버립니다. 그리고나서
S1을 구하고
Sin(각ACD)도 구하고, R도 구하고...
즉, 선분AC의 길이, Sin(각ADC), R을 모두 구해서 답을 냅니다. 이것은 아마도 답을 내는 과정이나 계획을 모두 다 마친 상태에서 연산하는 단계만 서술한 것이라고 보이는데... 그래도 조금 많이 이상합니다. 만약 둘다 구해야한다면 꼭 저런 모양(분자에 R 분모에 사인값)으로 구하라고 해야 했을까요?
다시 풀어 보겠습니다.
문제만 먼저 보면 원이 있고 그 안에 내접하는 삼각형이 있고 그 삼각형과 변 AC를 공유하는 각A가 60도인 삼각형이 있습니다.
맞나요? 고개가 끄덕여지시나요?
고개가 끄덕여 지면 논리가 꼬이기 시작합니다. 그 이유는 그림만 보고 나름대로 도형을 정의 했기 때문입니다.
이렇게 나름대로 정의 하면 작도하는 순서가 달라져서논리가 깨질 수 있습니다. 아마.. 헤매기 시작하겠죠?
문제 풀이의
첫번째는
문제 읽기 단계입니다.
도형 문제에서는 무엇보다 문제가 중요합니다. 그 이유는 도형이 어떤 순서로 정의 되었는가에 따라 구할 수 있는 것들이 결정되기 때문입니다.
이 문제는 처음에 사각형이 있습니다. 그 안에 대각선이 생겨 두 삼각형이 생깁니다. 그리고 그 중 하나의 삼각형의 외접원이 그려진 것입니다. 이해가 되시나요?
(아마 도형문제를 그림 먼저 보고 풀다가 안풀려서 문제 읽었더니 풀리던, 이런 경험있죠?)
두번째는
문제 설계 단계입니다.
1) 무엇을 물어 보았는가?
2) 단서를 이용한 조건의 해석
- 조건을 만족하는 식을 구합니다.
- 우선 S_2는 주어진 단서와 구하는 것을 보고 넓이를 나타내려고 한다면 선분AD*선분CD*Sin(각ADC)로 구하겠죠?
- 그리고 S_1을 구해야하는데 각과 길이 두개가 주어져 있으니 선분AC를 구해서 넓이를 구하면 되겠습니다. 이제 드디어 길이 AC를 구해야하지요.
(그전에 길이 AC를 구하는 것은 이상하죠? 만약에 주어진 정보만 가지고 아무 방향을 잡지 않고 구한다면, 길이 AC만 구하는 것은 이상합니다. 각과 길이 두개를 가지고 다른 각을 구할 수도 있는데 나머지 길이만 구한다고요?)
- 그럼 이제 조건을 표현해보면
- 일때,
를 구해야 합니다.
3) 이제 답을 내는 연산을 합니다. 조건을 해석했으니 이를 이용하여, 구해야하는 것을 재구성 해볼까요?
- R은 위에 구했던 선분AC와 각ADC로 찾을 수 있겠네요.
-
이므로 구해야하는 것은
이렇게 답을 내겠죠?
세번째는
답을 확인하는 단계입니다.
방법은 여러가지가 있습니다. 풀이를 역연산 해본다거나, 나온 답의 각과 길이를 이용하여 주어진 정보나 조건과 같은가 확인해 볼 수도 있겠습니다. 또한 다른 풀이를 찾아볼 수도 있습니다. 이 과정에서는 EBS의 풀이처럼 반지름을 구해서 역으로 확인할 수도 있을것입니다.
답지를 보기전에 이미 내가 맞았는가 틀렸는가를 알 수 있어야 시험장에서 만점을 받을 수 있습니다.
풀이를 다 하고 보면 단 한 번의 연산도 허투루 하지 않았습니다.
우리가 다양한 풀이를 추구하는 것도 좋은 공부겠지만 문제 출제의 의도에 맞게 풀이를 해야 과한 연산을 줄일 수 있을 것입니다.
논리적으로 풀고, 해야하는 기본적인 연산을 연습하는 것이
계산량을 줄이려고 새로운 공식을 늘이는 것보다 훨씬 더 유리하지 않을까요?
문제 풀기 전에 설계를 하고 풀이를 시작해봅시다.
문제풀이의 시간은 아마도...
생각하는 시간 | 계산하는 시간 |
1 | 9 |
2 | 7 |
3 | 3 |
문제를 어떻게 푸시겠습니까?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 과탐 2개를 해야한다니
-
난 평범한 걸까 3
못생긴걸까..
-
전추까지 기다려야하네 나름 잘 쓴거 같긴 한데
-
ㅇㅈ 8
앨범들 ㅇㅈ 이렇게 보니까 취향 참 개판이네
-
낫죠?? 제가 현역인데요 최저를 맞춰야 하는데 희망대학이 과탐 하나를 꼭 껴야된다고...
-
민증 밸런스게임 5
키 150초반이라 30대되어도 민증검사하기 170대인데 민증검사안하기
-
단발머리 남자 남자인데 왜이리 이쁨?
-
14명 뽑는 학과에서 36명 지원 중에 17등 점공했어요 제가 지금 12등인데...
-
마플수기총 수1수2 있는데 정시러 거든여 양치기해볼까요 아니면 뉴런이랑 n제좀...
-
기세
-
물리 지구 0
사탐 과탐 하나 할라하는데요 사회문화를 할거같고 과탐은 물리랑 지구 고민인데...
-
8명 뽑는데 7등, 점공률 70% 할만한가요??? 서울대 연세대 고려대 연경 고경...
-
1. 기숙은 아니고 강대 스투 재종 다니는데 나중에 친목심해지나요? 친목안하면...
-
쓰는 거 다 쓰고 남는 돈이 500만원 가보자고
-
과기원은 조기 발표 안하나요?
-
예쁜것으로
-
수학쌤 세분이 각각 수1 수2 미적을 담당하시는건가요…? 만약에 수2썀이 별로다...
-
이렇게 썼음에도 cc때문에 떨어지면 그냥 후회가너무남을듯
-
어차피 라이센스 없으면 다 똑같아
-
걍 너무 답답하고 오히려 스트레스 받아서 힘들다… 하루만에 그만두는 건 좀 그렇죠?
-
무슨 오티 동작 하나, 한마디 한마디가 다웃김ㅋㅋㅋㅋㅋㅋpositive한 쪽으로 웃김
-
편의점 가서 술 사는데 민증 검사 안하고 걍 삼 ㅅㅂ 별로 안삭았는데ㅋㅋㅋㅋㅋ.........
-
근데 저는 저랑 공부 비슷하게 하는 애들을 좋아했던거같음 3
한 명 빼곤 다 저랑 비슷한데 저보다 살짝 못했었음 그런거에 좀 끌리나봄
-
원점수 89 91 91인데 등급은 132임;; 국어 물로 낼 생각하지 마라
-
지금 정석민 쌤 듣고 있는데 진도가 ㅅㅂ 너무 느려서 심찬우t 도 같이 들을려고...
-
앨범 모으는 거야 이해할 수 있는데 프라모델은 왜 모으는지 모르겠다 하심 이거만큼...
-
관련 분야의 입문용 책을 읽는게 나을까요 인강으로 한번 쫙 정리하는게 나을까요
-
신나요 0
ㄹㅇ이에요
-
마더텅 기출로 독학 하고있는데 진짜 풀면 5개중에 2개맞혀서 유대종 독해 인셉션부터...
-
더못해지는거같냐.. 그사람 방법대로 풀라니까 익숙하지가 않아서 오히려 내가 어떻게...
-
오우석 2
안감사~
-
닥전임 닥후임
-
이거 미리 읽고 적용시키는 연습하고 있어도 괜찮겠죠 도식 풀이보면 안 배운 거...
-
빨리 들어와라
-
서ㄹ뱃 왓다 8
남은 건 에피인가...
-
ㄱㄱ?
-
다이어트 하는데 감튀는 사치기에… ㅜㅜ
-
17년뒤 고3자식 입시 준비할 생각하니 즐겁구나..
-
와 오늘 (더러움주의) 12
똥 3번쌈ㄹㅇ로 실화냐
-
스카이 간호 선호도 낮네.. 여초과라 더 비선호하는건가
-
왜 나만 빼고 하는데 ㅋㅋ
-
제발
-
맥날 가는 길 9
-
어제 도쿄에 있는 신바시역에서 투신사고로 도카이도선 정지 하지만 인신사고에 너무나...
-
친구 얘기임
-
정원 96 실지원 255 점공 인원 83 등수 4x 점공 비율 32.5% 0.75...
-
술 먹고 싶은데 2
오늘은 사케가 땡기는군
-
강기분에서 매체 3
원래 안가르치나요? 교재개념편에 내용이 아예없네요
풀이의 이유를 명확히 제시해주는 선생님이 정말 좋은 선생님이라고 생각해요
그런 점에서 쌤 응원합니다
감사합니다. 행복하세요!
잘 읽었습니다. 요즘 수능에서 준킬러라 불리는 것들은 깊은 개념보다는 빠른 상황해석을 요구하는 경우가 많더라고요. 한번 사고 회로가 꼬이면 10분 이상씩 잡아먹는 게 고민이었는데(어떻게든 풀어내도 딱히 수학 실력이 올랐다는 느낌은 안들더라고요) 방향성을 설정하는 데 도움이 되었습니다 감사합니다. ㅎㅎ
막무가내로 조건들을 수집해서 어떻게든 끼워맞추던 게 제 풀이방식이었거든요 ㅋㅋ 수학 고수들이 문제 풀기 전 먼저 생각을 하라는 게 이런 의미였다니...
도움이 되었다니 기분이 좋네요! ㅎㅎㅎ 문제를 풀이를 시작하기전 풀이 계획을 잡는 것에 고민하는 시간을 길게 가져보면 좋을것 같습니다.
개인적인 질문 드려도 괜찮을까요?
질문이야... 얼마든지요! 답변을 해드릴 수 있는 내용이라면 답변드리겠습니다.
국어강의는 누구 들으셨나요?
으ㅎㅎㅎㅎ
OBAR 해석법이네요
저렇게 읽어야 수학의 본질이 뚤리는데..
OBAR 해석법이 뭐에요?? 자세히 찾아보고 싶어요