2024학년도 9월 모의평가 수학 손풀이 (공통, 확통, 미적)
2024학년도 9월 모의평가 손풀이_울고있는치타_(공통, 확통, 미적).pdf
다들 9월 모의고사 응시하시느라 수고하셨습니다.
참 오늘도 평가원은 전설을 써나가는 것 같습니다.
난이도는 사람들이 킬러 쉬워보인다고 역대급 쉽다는 얘기가 많은데, 절대 쉽습니다.
손풀이 모음
https://orbi.kr/00063035233 - 2021학년도 3월 학력평가 (2021.03.25. 시행)
https://orbi.kr/00063052332 - 2021학년도 4월 학력평가 (2021.04.14. 시행)
https://orbi.kr/00062957540 - 2022학년도 6월 모의평가 (2021.06.03. 시행)
https://orbi.kr/00062968319 - 2022학년도 9월 모의평가 (2021.09.01. 시행)
https://orbi.kr/00062922276 - 2022학년도 대학수학능력시험 (2021.11.18. 시행)
https://orbi.kr/00063031810 - 2023학년도 6월 모의평가 (2022.06.09. 시행)
https://orbi.kr/00063019030 - 2023학년도 9월 모의평가 (2022.08.31. 시행)
https://orbi.kr/00062878683 - 2023학년도 대학수학능력시험 (2022.11.17. 시행)
https://orbi.kr/00062886228 - 2023학년도 3월 학력평가 (2023.03.23. 시행)
https://orbi.kr/00062938685 - 2023학년도 4월 학력평가 (2023.05.10. 시행)
https://orbi.kr/00063171555 - 2024학년도 6월 모의평가 (2023.06.01. 시행)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
좀 아는건 술술 읽히네
-
정벽햄 ㅇㅈ사진 11
5만덕에 구해요 쪽지 보내주세요
-
배고파죽겟음 5
제육 볶아오셈
-
나도못봤는데 8
정확히 이수린 시즌2임? 몇시몇분에 일어남?
-
안녕하세요 롤스가 운(천부적 재능같은것),운의 대한 결과물에 대한 응분의자격이...
-
제곱근 자작문제 2
수학 모의고사 만들면서 만든 문제인데 완성도가 그닥 높지 않아서 공유합니다. 발문이...
-
아 뭐야 못봤다 3
너무 아쉬운데
-
만약 중국이 지금보다 더 떡상한다면. 당연히 장기적으로는 미국이 억제를 어떻게든...
-
귀여운 칸나빼고
-
ㅇㅈ 아님 9
내 보물 ㅇㅈ
-
낚시하러가고싶네 1
그런거네
-
즐겁다 삿포로 10
-
행복하네 3
ㅇㅁㅇ
-
안믿는사람끼리 지옥가서 쿠데타 일으키고 하늘나라도 민주화시켜놨을거같음 걱정마셈 ㅇㅇ...
-
. 42
이게 벌써 5년 전인가
-
7기 아웃풋 8기 아웃풋 사실 별 차이 없음
-
맞팔 안구함 2
ㄱㄱ
-
반박하려면 보닌보다 덕코 많아야됨
-
Mbti맞춰봐요 7
뭐같음
-
학원물. 남주는 친구 없고 여주는 씹인싸. 서로 좋아하는데 여주가 개씹혐성츤데레라서...
-
나의 앰비티아이 21
그건 비밀이란거야
-
진짜 자러감 13
다들 굿나잇이다.
-
고3때 열등감 때문에 노베로 시작해서 재수까지 했는데 아쉬움이 너무 남는것...
-
커뮤에 확실히 2
istp랑 intp가 많은듯
-
사탐런 질문 3
이제 고3 올라가는 07년생입니다 작년부터 사탐런에 대해 얘기가 많더니 지금은...
-
iStJ 있나요 1
-
임신서기석 10
ㅇ.
-
나도 칼럼 써봄 22
풉
-
스토리짜도 다 흔한 클리셰범벅이야
-
찐따새끼라는나쁜말은ㄴㄴ
-
좋아하는 소설이 7
완결직전이라는 것은 너무 슬퍼요
-
INTP 손~~ 18
넵
-
이 오르비언이 현생에서 착한 사람인지 아닌지 대충 알거같음
-
예비고1 이고 고2모고는 80후반 정도떠요 (고3건 학원에서 아직) 너무 감독해만...
-
조선시대에 공주였던여자애가 궁에서일하는궁녀와사랑에빠짐 둘이사랑해서 은밀하게...
-
참고)고인물들은 안 봐도 됨 화2가 처음이거나 미숙하면 농도 관련된 문제를 풀 때...
-
대신 틀 인정하는 거임
-
대한민국 중앙지검 부장검사 대유빈
-
야수의심장으로 한 -30퍼까진 괜찮다고봄
-
너무 병신같나..
-
무물보 17
해주세요
-
이거 코어랑 모어 합치니깐 1000문제인대ㅈ버그임?
-
어 방금 생각남 ㄹㅇ내머릿속애서나가.
총평도 부탁드림미다
추가하겠습니다...
일단 그냥... 그렇네요.//
이거하느라 바빳구만 ㅊㅊ
미적은 언제 올라오나용??
지금 추가했습니다!!
그저 부럽다... 왜 우리 때는 21 30 몰빵이었을까 차라리 이게 훨씬 변별력있는듯
오히려 그게 나을수도 있습니다.
지금처럼 어디서 어려운 문제가 나올지 딱 보고 판별하고 넘어가는 능력을 요하지는 않았으니까요...
예전 30번 처럼 5%미만의 정답률은 시험으로서 변별력 가치가 없는건 이미 논문에서 검증 끝났는데요...
변별력 말구요 시험보는 학생입장에서요 ㅇㅇ 그만큼 편한건 팩트잖아요 애초에 21 30 맘편하게 버리고 가는 사람도 많았고
아 편하긴 한데 전 좀 억울했어요 ㅠㅠ 50분 남았는데 50분동안 낑낑대고 못풀었거든요 정말 열심히 했는데 결국 30번은 못맞추니 허탈감이 더 컸어요 상대적으로 지금은 열심히 한만큼 보상받는다 봅니다
아 그정도 등급대시면 그렇게 생각하실수도 있을 것 같아요. 시험마다 장단점이 있어서..
이런 시험 형식이면 초코냥냥님 같은 분들은 오히려 좋을 수도 있는데, 한 3등급대부터는 진짜 시험에 풀수있는 문제 찾아다니다가 끝나거든요.
전반적으로 난이도가 있다보니 실력이 애매하면 문제가 다 어려워서요 ㅋㅋㅋㅋ
장단점이 있는것같아요!!
29번 풀이 실.화.냐?
1번보다 풀이가 적은 29번 ㄷㄷ
ㄹㅇㅋㅋ
f'(-a)가 왜 0보다 크거나 같나요? -1일때 0인건 알겟는데...무조건그래야하나요?
중학교 과정입니다!
이차함수의 대칭축에서의 함수값이 0 이상이어야 f(x)가 계속 증가하기 때문에
실근이 존재하지 않는다는 내용을 사용한겁니다
10번에서 f'(-a)를 넣어줄때 왜 양수쪽 식에다 넣어주는건가용????
아 13번이요!
음수쪽 식에서는 -b>0이다를 사용하여 -1에서는 실근을 갖고, 그 외에는 음수범위에서 실근이 생기지 않는다는 조건을 사용한 것이고
양수쪽 식에서는 계속 식이 양수여야하기 때문에, 양수쪽 식에 대입한 겁니다.
f'(x) 식을 관찰해보면 사실 -b만큼 평행이동하고 음수쪽 식과 양수쪽 식은 대칭인 상태잖아요? 그거랑 같이 연결지어 생각해보면 될 것 같아요~
저도 27번 저렇게 나오던데 뭐가 문제일까요
오잉 마무리를 안해뒀네요
15/8 + 1을 하면 답 잘 나옵니다
그러네요 왜 마무리를 안해뒀지
미적 28번, f>=0이고 , fa=0 이면 f'a=0임을 이용한건 알겠는데, 저거 절댓값 있는데 저렇게 미분해도 되나요?
아 이제봤네요
미분??? 미분이 아니라 절댓값인데 미분가능하다는 조건 활용해서 나온겁니다.
제가 질문을 맞게 이해한걸까요??