우주론 강의 1. 우주론의 기본원리&허블 법칙의 유도
음... 시간이 남을 때 우주론에 대한 강의를 좀 써보려고 합니다.
좀 어려울 건데요. 관심있는 학생들도 있지 않을까 해서 써봅니다(반응이 별로면 그만둘지도... ㅎ).
수식은 한글에서 써서 캡쳐한 뒤에 붙였는데(여기 수식 문법에 익숙하지 않아서) 자동으로 크기를 맞추려고 하는건지 크기가 제각각이네요. 음... 별로네요... 아무튼 시작합니다.
1. 등방성과 균질성
우주론의 기본원리는 등방성과 균질성이다. 등방성이란 관측자가 어느 방향을 관측하건 같은 모양을 관측한다는 것이다. 균질성은 밀도가 균질함을 의미한다.
우리가 밤하늘의 별을 보면, 이것이 성립하지 않는 것처럼 보인다. 좁은 영역에서는 등방성과 균질성이 성립하지 않는 것처럼 보인다는 것이다. 그러나 큰 범위에서는 얼추 성립하는 것처럼 보이게 된다.
그림은 기본 천문학(구판 p.457)에서 가져왔다. 좁은 원에는 은하가 2개 있고, 중심에서 이 원 내부만 관측한다면 등방성과 균질성이 성립하지 않는 것처럼 보인다. 그러나 조금 더 큰 원 내부까지 관측한다면 이제는 얼추 등방성과 균질성이 성립하는 것처럼 보인다. 이처럼 우주는 큰 영역에서 등방성과 균질성이 성립하는 것처럼 보이고, 우주론에서는 이를 기본 원리로 가정한다.
2. 로버트슨-워커 계량
직교 좌표계에서 시공간 거리는 다음으로 정의된다.
이때 는 고유거리를 나타내는 부분이다. 고유거리는 우리가 일반적으로 생각하는 어떤 한순간 공간상의 두 점 사이 거리이다.
만약 우주가 등방성과 균질성을 만족한다면, 고유거리 부분을 바꿔서 시공간 거리를 다음으로 나타낼 수 있다(유도는 하지 않는다.).
여기서 a(t)는 척도인자라고 하며, 우주의 상대적 크기를 의미한다. 정확한 우주의 크기를 알 수 없으므로, 현재 우주의 크기를 1이라고 하고, 어느 시점에서 우주의 크기를 현재 우주의 크기와 비교한 값이다. 상대적 크기이므로 무차원이다.
이 식에서 거리를 나타내는 부분을 다음으로 쓰자.
d_p는 고유거리이다. X는 공변거리이다. 이 값은 지금 현재 어떤 점이 나로부터 떨어진 거리이며, 변하지 않는다.
예를 들면, 지금 어떤 은하 A가 나로부터 떨어진 거리가 1Gpc이라고 하자. 이 은하는 공간상에서 운동하지 않는다고 가정하자. 현재 척도 인자는 정의에 의해 1이므로 X=1Gpc을 얻는다. 이제 먼 미래에 우주의 크기가 지금의 2배가 되었다고 하자(즉, a=2). 그러면 은하 A의 고유 거리는 2배가 되어 d_p=2Gpc이 될 것이다. 그러면 X는 여전히 1Gpc임을 확인할 수 있다. 이처럼 어떤 점까지의 공변거리는 우주가 커진다고 해서 값이 변하지 않는다.
또, 위 식을 보면 X가 일정하므로 r, theta, phi 또한 일정해야 할 것이다. theta, phi는 적경, 적위와 같은 개념이라고 생각하면 된다. r은 공변좌표로, 이 값 또한 일정하며 우주론에서 다양한 거리를 정의함에 있어 자주 보게 될 것이다.
3. 허블 법칙의 유도
자, 이제 고유거리를 시간에 대해 미분해보자. 그러면 이것은 어떤 점이 나로부터 이동하는 속도를 나타내게 된다.
X는 시간에 대해 상수이므로 시간에 대해 미분할 경우 0이 되므로 위와 같이 될 것이다.
이제
로 정의하면, 식은 보다 간단해진다.
이 H(t)는 어느 순간 t에서 우주의 모든 공간에서 같은 값을 가진다. 이것을 허블 상수라고 한다. 그러니까 어떤 공간상의 점이 나로부터 멀어지는 속도는 허블 상수와 고유 거리의 곱으로 주어지게 된다.
유도 과정에서 우리가 가정한 것은 로버트슨-워커 계량 뿐이다. 그러므로 우주에서 로버트슨-워커 계량이 성립할 경우에 허블 법칙이 성립한다. 즉, 우주가 등방성과 균질성을 만족한다면(그리고 상대성 이론이 옳다면) 우주에서 허블 법칙이 성립한다.
그러니까 우리가 다루는 모든 우주 모형에서 허블 법칙이 성립한다.
단, 이때 허블 법칙은 공간상의 점이 멀어지는 속도는 고유거리에 비례한다는 것이다. 만약 허블 법칙을 적색편이와 광도 거리(거리-지수 공식으로 구해지는 거리) 간의 비례 관계라고 한다면, 적색편이가 1보다 매우 작은 범위에서만 성립한다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적분하는데요 개정시발점으로 사면 수1,수2용으로 대수랑 미적분 1사면 되나요?...
-
시대인재 국어 단과 다니려고 하는데 강기분 듣다가 문학은 체화하기 괜찮았는데 독서는...
-
쉽지않네
-
수1은 모르겟는데 수2 얻어가는게 없눈거같은데.. 내가 허수인거냐
-
글고 반이라는게 어떤 느낌임?? 학교에서 반같은거에요?
-
보면 감점이 큰가요??
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 질문받으려고 들어간건 아니었는데
-
근데 문제는 작수가아니라 24수능 1등급임 대학 1년 다니다가 재수 하는거라 작년에...
-
물리1 0
대성 방인혁T 물리 더 펀더멘털부터 시작하는게 좋나요 더 비기너부터 시작하는게 좋나요?
-
왜 이렇게 생겼지 17
ㅅㅂ
-
고등학교 진학률이요
-
진짜 안갚아도 되냐 이거 만원정돈데
-
지듣노 0
애인이 생긴다면 꼭 노래방에서 불러보고싶음.
-
이겼잖아 근데
-
앞으로 보드는 1+1입니다 피부과+소아과 3년씩 안과+산부인과 3년씩...
-
여자많은편인가
-
우와 8
올해는...
-
모두가 죽진 않는다 다수가 죽을뿐 소수는 생존한다
-
너의모든순간 2
그게나였으면좋겠다
-
자꾸 옆에 오려는 동기가 있으면 어떡함? 걔가 앞에 자리잡아서 맨뒤로가면 자기가...
-
편견과 선입견
-
이쪽으로는 잘몰라서
-
친구들이 노는데 못 낌 ㅠ
-
전체 지원자수 1단계 합격자수(2배수) 어느 것으로 입력해야 할까요?
-
2022 개정 한번 사봐야될것같은데
-
연대계약vs지거국약대 11
엔수생 미필 경기도 본가(중산층, 아빠 대기업다님) 친구,여친,가족 등 인간관계 다...
-
국어 현강 0
강기분 듣다가 문학은 체화가 되는데 독서는 너무 어려워서 국어 현강 들으려고 하는데...
-
급함
-
군대에서도 병신인데 애는 착하다는 말 많이 들었었는데 ㅋㅋㅋ 갑자기 신뢰도 파악 올라가노
-
입시 끝나면 윤사도 공부해야지 내가 철학의 기본이 되는 무언가를 배운다는게 너무...
-
국어 고수분들 10
언매랑 화작 중에 뭘하는게 좋을까요?? 언매는 아예 노베이스고 작년에 수시최저...
-
어떤게 더 어렵나요?
-
얼부기 13
굿모닝이에요
-
현정훈T 6
내년에 현정훈T 라이브 들으려는데 올해는 물리 인강 누구 듣는게 좋을까요?? 누구를...
-
[D-5] ❗️기간 연장❗️ 2025 서울시립대학교 오픈 캠퍼스 투어 0
[2025 서울시립대학교 오픈 캠퍼스 투어] 안녕하세요! 함께 꿈을 이루어 나가는...
-
입문n제 0
수학 안정 2등급대 나오는데 입문N제 몇 개정도 푸는게 좋나요??
-
사람이 먼저다 2
ㄹㅇ
-
누군가는 엔지니어보다 간호사가 미국 간호사 자격만 따면 이민가기 유리하다고 하던데
-
역시 ㅆㅅㅌㅊ
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
ㄹㅇㅋㅋ
-
이럴줄 몰랐는데 약간의 두통이랑 어지러움이 생겼네요
-
ㅇ에ㅐ
-
어디가 심할까?
-
얼부기 3
-
이거 상대방이 쓰면 쓴 매장위치나오나요
-
정승제T 개때잡,기출끝,팔구십퍼요,시빌리삼을 노베이스가 몇개월안에 끝낼 수 있을까요...?
개추
헐 ㅏ 너무 기대되요 잘 읽을게요 ! 감삼다