[Team PPL 칼럼 71호] ‘경우의 수’ 단원을 얕보지 말자
우리는 중학교, 고등학교에서 적어도 두 번, 많으면 세 번까지 경우의 수를 세는 단원을 접하게 됩니다. 중학교 2학년과 고1의 수학 (하)에서 한번씩, 또 선택과목 확률과 통계에서까지 말이죠. 그런데 이때 배운 개념과 사고과정들은 실제로는 해당 단원이 아닌 곳에서도 빈번하게 쓰이고 있습니다. 합의 법칙과 곱의 법칙에 대한 내용을 정확히 이해하고, 다른 단원의 문제에 사용된 것을 통해 해당 개념의 중요성을 다시 일깨워 보는 시간을 갖도록 합시다.
# 왜 ‘더하기’인가요?
합의 법칙의 내용은 다음과 같습니다.
두 사건 A와 B가 동시에 일어나지 않을 때, 사건 A가 일어나는 경우의 수가 m, 사건 B가 일어나는 경우의 수가 n이면
(사건 A 또는 사건 B가 일어나는 경우의 수)=m+n
이다.
단순한 내용 속에서 우리가 이해해야 하는 본질은 다음과 같습니다:
두 가지 상황이 ‘동시에 일어나지 않으면’ 각각의 경우를 분리해서 구해야 한다.
보통 위의 내용을 이해하는데 어려움을 겪는 경우는 그렇게 많지 않습니다. 그런데, 문제에서 사용될 때는 이야기가 조금 달라집니다. 아래의 문제를 보시고, 이어서 설명드리겠습니다.
예시 1. 한 개의 주사위를 던질 때 나오는 눈의 수가 2 이하 또는 5 이상인 경우의 수를 구하시오.
쉽죠, 2 이하인 눈은 1, 2의 2개, 5 이상인 눈은 5, 6의 2개이므로 합쳐서 4입니다.
두 번째 예시는 어떨까요?
예시 2. 2023학년도 6월 모의평가 (공통) 12번
해당 문제는
조건 (가)에서 와 의 부호가 반대이므로 , 이어야 하는 조건을 이끌어낸 뒤,
조건 (나)에서 의 부호가 어떤지에 따라 경우를 나누어 구하는 문제입니다.
상황에 따라 계산할 식이 달라지기 때문에, 경우를 나누어 따로 구해야 할 필요성을 인지하지 않으면 문제를 제대로 풀 수 없습니다. 위의 예시 1과 같은 문제를 풀어오면서, 예시 2와 같은 문제를 풀 때 상황을 나눠서 푸는 것에 익숙해져 있다면 절댓값 같은 상황에 더 유연히 대처할 수 있지 않을까요.
# 동시에 안일어났는데요? ‘곱의 법칙’
곱의 법칙의 내용은 다음과 같습니다.
사건 A가 일어나는 경우의 수가 m, 그 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면
(두 사건 A와 B가 동시에 일어나는 경우의 수)=m n
이다.
여기서는 ‘동시에 일어난다’ 라는 표현에 주목할 필요가 있겠습니다.
보통 일반적으로 이야기하는 동시라는 표현은 같은 시점에 발생하는 두 가지 일을 이야기 하지만, 여기에서 동시라는 표현은 이렇게 이해해야 합니다.
두 사건 A, B가 ‘같은 시간선상’에서 발생한다.
즉, 주사위 두 개를 동시에 던지던, 1시간의 간격을 두고 던지던, 같은 시간선상에서 두 주사위가 동시에 던져진 결과물이기 때문에, 동일한 상황으로 취급합니다.
따라서 이렇게도 해석 가능합니다.
어떤 시행의 서로 다른 m가지 결과 각각에 대하여 사건 B가 일어나는 경우의 수가 n이면,
총 경우의 수는 n을 m번 더한 것, 즉 n m이다.
우리가 곱하기를 처음 배울 때 출발한 개념과 비슷하게 이해할 수 있겠습니다. 위와 같이 이해하면, 한가지의 케이스 분리를 한 뒤 그 안에서 일어나는 또다른 케이스 분리에 대해서도 보다 쉽게 접근할 수 있을 거라 생각합니다.
뭐 가끔 이런 문제처럼 출제진까지도 생각 못한 케이스 분리가 존재할 때도 있긴 하지만요...ㅎ
예시 3. 2019년 6월 고2 모의고사 (가형) 30번
# 경우의 수를 대하는 자세는 문제풀이의 필수요건이다.
제일 단순한 실생활의 예시를 통해 수학문제를 풀 때 필요한 논리적 사고력을 키울 수 있는 단원은 분명 이 단원입니다. 실제로 출제되는 문제들 또한 미지수와 복잡한 수식들보다 일상생활에서 친숙히 볼수 있는 소재들로 구성된 문제의 비율이 가장 높기도 하고요. 해당 단원의 학습을 소홀히 하지 않고 어렸을 때 퍼즐을 풀던 감성처럼 오랫동안 고민하면서 공부하면 복잡한 문제에서도 당황하지 않고 상황을 분석할 수 있는 힘을 기를수 있을 것이라 생각합니다.
예비 고1 여러분들, 또 미적 선택을 고민중인 분들도 해당 단원만큼은 꼭 공들여 공부했음 좋겠다는 바람입니다!
칼럼 제작 | Team 수하기
제작 일자 | 2023.02.12
Team PPL Insatagram |@ppl_premium
*문의 : 오르비 혹은 인스타그램 DM
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
우주덕후 행복사
-
사실 한 번 푼 킬러문제들은 거의 다 보자마자 기억나긴 하는데,그 중 좀 인상깊엇던...
-
디시에 글 하나쯤 써보지 않았을까?
-
첨에 어질어질하다가 담배 들어가면 순간 세상이 희엿뜻하게 보이다가 점점 맑아지는...
-
04입니다 29
네.
-
아 배고프다 3
저녁 안 먹음
-
인스타 맞팔 한명 늘렷음 조금은 성장한거 아닐가
-
따라갈 수가 없다 얘들아 진도가 너무 빨라…
-
25수능 물리 1컷 48 예측은 시대인재밖에 없었다 그저 빛 ㄹㅇ
-
트럼프 “화성에 미국 국기 심고 싶다"…머스크 환한 미소 2
[뉴욕=이데일리 김상윤 특파원] 제 47대 미국 대통령이 된 도널드 트럼프 대통령은...
-
,
-
사탐런 고민 14
과탐 물지였고 수능 백분위 99 99임 작수는 93 90 이였는데 이때도 뭐 2등급...
-
왁스 쓰기 싫은데
-
별의 별 이상한 사람 다꼬인다 담임피셜 이러면서 뭐 국어 1컷100이다 수학 미적...
-
새터 가야 할까요..? 10
시립대가 2/18/-2/20일날 새터 간다는데 중앙대는 18일or 마지막날 추합...
-
ㅇㅈ 8
귀요미
-
지구 특 1
태양을 중심으로 회전 중
-
하다보면 되려나
-
수학 실모 0
수학 실모를 n제처럼 11~22 27~30만 푸는건 어케 생각함? 하반기면...
-
수학 22번 물로켓인데 정답률 왜이러냐 ㅋㅋㅋ 이 시험지가 1컷 88? 이건...
-
농담이에요
-
지구 특 10
매년 물로켓 설이 있었음 하지만 내 첫 수능 때 20번이 그걸 종식시켜버렸지
-
?
-
전 진짜 어려요 5
여기 돌아다니는 어린이 호소인들과는 다름 ㅇ.
-
정해진 규칙을 탈피함. 자유분방한 손가락임.근데 빠름
-
25수능 82 89 2 99 100 수능 딱 110일 준비했음 그 이전까진 수능...
-
아저씨.. 나쁘지 않을지도
-
[속보] 트럼프 “미국엔 남·여 두 성별만 존재할 것”…反동성애 시사 1
20일 취임식에 참석한 도날드 트럼프 미국 대통령. [UPI] [속보] 트럼프...
-
캄오실데석페 7
이거 첨 배울 때 데본기가 어딘지 헷갈렸는데 뭔가 하나 빠져있는 곳에 끼워넣으면 딱...
-
못 봐서 변명은 못하겠네
-
근데 모솔이면 1
티남?
-
혼자 뭘 하는 게 남 눈치 안 보이고 편함
-
심심할 때 팁 0
뉴런 개념 적혀잇는 곳 읽고 잇기
-
다들뭐함 17
이시간만되면심심함 그렇다고 자먄 재밌는 일이 일어남
-
저 같은 경우는 거의 집에만 있어서 올해 겨울에 눈이 많이 안 내린 것 같은 느낌과...
-
나 어리다 3
어리석다의 옛말
-
실데나필 5
-
근데 나 어림 18
님들 생각보다 ㄹㅇ 어림... 그리고 여자 아님 중요함.
-
새르비 6
항상 다 익숙한 분들만 계심
-
토일 풀 알바 뛰어서 새터 못가는데 친구 어떻게 사귀나요 오티나 개강총회도 주말에 하는건가요?
-
물리하는 친구들 사귀고 그 친구들한테서 애니랑 버튜버 알게됨 물리는 하는게 아님
-
잘자용 8
내일뵈용 다들
-
위 24수능 아래 25수능 생명이 지구보다 훨씬 잘 나왔는데 수능날 좀 많이...
-
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
wasnotturn?
-
롤체 0
증강 어느정도 골라서 갈 수 잇을 때 재밋엇는데 ㅋㅋ트페 고르면 판도라 나오고 이런거
-
헤어지고 나서 중간중간 연락하고 만난적도 꽤 있음 근데ㅠ연애할때랑 느낌 다른 만남만...
-
잘해보려고해도 이건 해어지는게맞아 힘들어..
-
고1때는 여자랑 대화라도 해봤는데 고2때 물리반 들어간 이후로 여자랑 대화를 거의 안 해봄
시러시러 경우의수 시러요 마니시러