[박수칠] 2016학년도 포카칩 모의평가 예비시행 해설
2016학년도 포카칩 모의평가 예비시행(B형) 해설-박수칠.pdf
2016학년도 포카칩 모의평가 예비시행(A형) 해설-박수칠.pdf
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
딴걸 다들고가네 한번 해볼까?
-
하ㅠㅠㅠㅠ 존버의 끝은 성공이다
-
국어 비문학 0
국어 비문학에 대한 칼럼을 적으려고 합니다. 특정 주제나 궁금한 점 남겨주시면 그...
-
오르지 못하는 대학 가고싶다...
-
원서영역에 100프로는 걍 없음 뭐 이건 당연히 다들 알고있겠지만… 컨설팅 받는다고...
-
의견 안 맞은 채 원서 넣게 하더라고요. 이것도 다 캡처 되어 있긴 한데 나중에 폭로함.
-
똥 6
발싸
-
내가 다른 사람들 보고 가 군 중대공대 가지 말고 다른데 가라고 함? 그것도 아니고...
-
공감되는 내용 있으면 조아요를 마구마쿠
-
공식 발표일이언제죠! 그 전날 6시가 국룰이었던거같은데
-
고시, 로스쿨 생각 없는데 그러면 중대가 나을까요? 원래는 이관데 물리노베입니다...
-
과거엔 점공 몇등까지 최초합 추합했고 이런거요 점공리포트 쭉 내려봐도 안 떠서요 ㅠㅠ
-
뱃지 1
어케 달아요???
-
고대 5시이후에 0
발표한적 없죠?
-
완전 쌩노베는 아니고 한바퀴는 돌렸지만 작년에 돌렸어서 거의 기억이 안나는...
-
오래전 지문이고 예비시행이기도 하고 무엇보다 문제 풀기에는 지장이 없어서 다들...
-
흡
-
이러면 내가 응시 할 수 밖에 없어
-
연잡은 실컷 조발해라 우리는 우리의 길을 간다
-
발표 0
아직 발표 안한 인서울중에 2월 6일 발표 학교 어디인지아는사람
-
해도되나요 하…
-
외대 ㅇㅈ 8
응애 서강대는 언제 나옴
-
일단 전 본적이 없는거같아요
-
둘 다 합격하면 어디 가세요?
-
22명 뽑고 예비 18번임요ㅠㅠ 작년은 예비 25까지 돌았고 다군 4칸이었어요..ㅠ
-
열심히 했구나 vs 레전드 고능아 굳이 하나를 고르자면 뭐가 더 기분 좋나요
-
계속 하게 되네요. 재수 삼수도 군수도 심지어 이번엔 더 그 여파가 크고요......
-
자꾸 타 팀 팬들이 와서 (어느팀이라곤 말안함) LCK Cup에서의 성적은 의미가...
-
집가서 밥먹기 10
그냥 집 가면 다시 안 올 걸 알기에 시간제인데 퇴실 안 하고 간다.
-
정시가 좋은게 18
초중딩때 인생 좃대로 살아서 고딩내신 꼴아박아도 모고 계속 못 봐도 수능만 잘 보면...
-
돈 겨우 빌려서 중고구매에 성공했다는거임 이제 나에게 오는거다
-
사탐런 수요조사 0
https://orbi.kr/00071478364 투표부탁합니당
-
많관부
-
꼭 전문항 해설 안 듣고 필요한 것만 발췌독해도 괜찮을까요? 시간 너무 아까운듯요
-
크럭스 컨설팅 올해 컨설팅으로 얼마나 벌었을 것 같나요? 5
오르비 유저분들의 생각이 궁금합니다.
-
물2지2렛츠고 4
안씻기1시간째.
-
뭐 해도 하루전에나하겠지...
-
원서 세 장 점수까지 다 같으면 우연의 일치임 아님 오류임 아님 중복계정임?
-
정시 = 개별주,코인 12
수시 = 지수추종 이거인듯
-
다 어디갔니
-
6시 조발 실패..... 결국....진짜 내일 6시인건가..... 빨리 알려주세요ㅠㅠ
-
우울하다 일반으로 655.XX였는데…. 교과우수는 떨어질 각인데… 일반으로는 추합...
-
이미지t 커리 0
이미지t 미친개념 다 듣고 미친기분하고 있는데 다른 강사분의 개념강의를 더 들을...
-
근데 뭐 여기 N수하는사람 많고 나도 N수하긴할건데 4
N수 ㅈㄴ많아지는게 사회적으로 좋은게 아닌건 맞는듯..따지고보면 다 상위권 인재들의...
-
어디부터인지 알 수 있을까요??
-
해외주식 궁금한점 16
1주단위로 사는거라 테슬라는 59만 단위로 살수있는거죠 토스로그냥 시장가로 사면...
-
저녁여캐투척 17
음역시귀엽군
-
과학 하나 1이여도 애초에 사과탐이면 못 받나요?
-
ㅇㅇ
-
추합 질문 0
만약 A대 최초합하고 등록했는데 B대학 추합하면 A대학 등록취소하고 B대학 등록하는건가요?
안녕하세요 선생님 해설 감사합니다!
29번과 관련해서 저번에 쪽지받고 처음엔 이상하게 생각했는데 그날부터 천천히 고민해보니 선생님의 말씀이 타당한것 같습니다.
만약 선생님 말씀대로 해석하여 문제를 풀경우 최댓값이 아마 더 커질것같은데 이부분에 대해서 계속 고민하고 있으며 더 엄밀하게 논증해서 답안을 내어 오르비에 올려보도록 하겠습니다.
댓글 감사합니다~ ^^
저도 고민을 많이 했는데요, 일단 해설지에는
1. 원과 정육각형의 접점이 변의 중점인 경우
2. 원과 정육각형이 접점이 변의 중점이 아닌 경우 (단, 원과 정육각형이 접하는 것을
원과 정육각형의 변이 접하는 경우로 봄)
로 나눠서 풀었습니다. 말씀하신 대로 2에서는 답이 조금 커지구요.
원과 정육각형이 꼭짓점에서 만나지만 변과 접하지는 않는 경우
(설명이 조금 어려운데 29번 해설 맨끝에 그림이 있습니다)도 생각할 수 있는데
복잡해서 안실었습니다. (사실은 포기ㅎㅎ)
해설지 만들면서 문제 만드는데 공을 많이 들였다는 느낌이 확 들었습니다.
좋은 모의고사 만들어주셔서 감사하단 얘기 드리고 싶어요!
해설지 너무 감사드립니다.
해설지 보고 몇가지 궁금한 것좀 물어볼게요.
19번에서 D와 C의 y좌표를 잡으실때 +- 3/2 (플러스마이너스 3/2) 로 하지 않아도 되는 이유가 궁금합니다.
20번 ㄷ 에서 f(x)의 변곡점을 f ` (x) 의 그래프 개형을 그려봤을 때 f ` (x)가 극댓값 혹은 극솟값을 가질 수 없으므로 변곡점이 존재하지 않는다라고 하면 논리상 문제가 되는 부분이 있을까요??
29번에서 원과 정육각형의 교점이 정육각형의 한변의 중점인 경우 에서 정육각형의 중심을 H라 하고
O1P 벡터를 O1H 벡터 + HP 벡터로 하고 O2Q 벡터를 O2H 벡터 + HQ 벡터로 하면 최댓값을 구하는과정이 많이 간단해지지 않을까요??
[19번] 결론부터 말하면 두 평면이 직교하고, 각각의 평면이 x축에 대해 대칭이기 때문에
점 C의 y좌표가 3/2일 때나 -3/2일 때, 점 D의 y좌표가 3/2일 때나 -3/2일 때 모두
선분 CD의 길이가 같습니다.
이해를 위해 그림으로 따져 봅시다.
아래 링크의 첫 번째 그림에서는 두 점 C, D의 y좌표가 모두 3/2입니다.
http://image.fileslink.com/245c2e99852ba68/Microsoft_PowerPointScreenSnapz017.jpg
첫 번째 그림에서 두 점 C, D의 xy평면으로의 정사영을 각각 C ’, D ’이라 하면
이 점들과 두 점 C, D에서 x축에 내린 수선의 발 두 개로
두 개의 회색 직각삼각형을 만들 수 있습니다.
이 삼각형들을 평면 √3y-z=0에 대해 대칭이동시키면 두 번째 그림이 나타납니다.
이때 선분 CD의 길이가 변하지 않고, 평면 √3y-z=0에 x축이 포함되어 있기 때문에
선분 CD와 x축이 이루는 각도 그대롭니다.
두 점 C, D의 y좌표가 모두 -3/2일 때도 마찬가지겠죠.
그리고 해설지에서 경우들을 고려하지 않은 것은
문제에서 cos² (theta)의 값들의 합이 아니라 cos² (theta)의 값 하나만 구하라고 했기 때문입니다.
이런 경우에는 가능한 모든 조건을 다 따질 필요 없이, 조건을 만족하는 경우 하나만으로
답을 내면 문제 푸는 시간을 줄일 수 있죠.
[20번] 문제에 주어진 함수가 아니라 일반적인 함수에 대한 질문 맞죠?
f ‘(x)의 도함수가 f ‘’(x)이므로
f ‘(x)의 극점에서는 f ‘’(x)의 부호 변화가 생기기 때문에 f(x)의 볼록한 방향이 변합니다.
즉, f ‘(x)의 극점에서 f(x)의 볼록한 방향이 변하고,
같은 맥락에서 f ‘(x)가 극점을 갖지 않으면 f(x)의 볼록한 방향이 변하지 않는다고 할 수 있겠네요.
그런데 두 명제는 ‘이’의 관계다 보니 반례가 있습니다.
아래 링크의 함수 f(x)는 점 ( a , f(a) )를 경계로 볼록한 방향이 변하는데
이 점에서 미분불가능하기 때문에 도함수 f ‘(x)가 극점을 갖지 못합니다.
http://image.fileslink.com/245c2e99dab6b9d/Microsoft_PowerPointScreenSnapz018.jpg
하지만 20번 문제처럼 두 번 미분가능한 함수로 한정하면 반례가 나타날 일이 없겠네요.
[29번] 해설지의 첫 번째 풀이는 접점이 변의 중점일 때 ’두 점 P, Q가 여기에 있으면
내적이 최대겠구나’를 예상하고 푼 것입니다. 그리고 그것을 확인하기 위해 풀이와 같은
과정을 거쳤구요. 그림 하나에 겹쳐 그리면서 생각하면 간단한데 글로 표현하다 보니
많이 길어졌네요 ^^;
그리고 처음 문제 풀 때 벡터 분해하고, 성분으로 나타내서 접근할까 싶었는데
변수가 2개 생겨서 골치 아플 것 같아 그냥 넘어갔습니다.
그런데 지금 풀어보니 이 방법도 간단하네요...ㅎㄱ
이 방법도 정리해서 추가하도록 하겠습니다 ^^
해설 감사해요 ㅠㅠ
네 학습에 도움 되길 바랍니다.
열공하세요~ ^^
28번 해설 사인셉타값 r+1분의 r인거같은대 수정부탁드립니다
헉 이런 실수를...
수정했구요 피드백 감사합니다 ^^