12번에 대한 개인적인 생각
수능은 잘 모르지만 문제 오류 논란이 생긴 것 같아 짧게 써봅니다.
우선 수능 수학(고등학교 수학)과 대학 수학의 차이점을 알아야 합니다. 12번 문제는 확실히 발문이 불명확하고 대학 수학의 관점에서는 오류라고 판단할 여지가 있으나, 추론 능력과 문제 해석 능력도 중요시되는 수능이기 때문에 "모든 n으로 해석해야 풀리도록 설계했다" 라고 변명하면 더 공격할 수가 없습니다. 순수 수학의 관점에서는 오류라고 생각을 하고, 충분히 이의를 제기할 수 있지만 평가원이기 때문에 전원 정답 처리될 가능성은 낮습니다.
사실, 순수 수학의 관점에서는 수능 수학의 출제 범위가 되는 고등학교 교과서의 많은 부분이 오류입니다. 극한의 정의도 오류라고 생각할 수 있을 만큼 추상적인 자연어로 해놓았고, 요즘은 수정되었는지 모르겠지만 연속함수의 정의도 잘못되었습니다. 미적분학에서 가장 중요한 미적분학 기본 정리(FTC)를 마치 자명한 성질인 것처럼 그림 하나 띡 그려놓고 넘어가는 만행을 저지르기도 했으며, 수열의 정의도 일반적인 정의와 다릅니다. (교과서에서는 초항을 a_{1}로 정의하지만 실제로는 n >= n_{0}인 모든 자연수 n에 대하여 a_{n}의 값이 정의되도록 하는 최소의 정수 n_{0}에 대하여 a_{n_{0}}를 초항으로 설정하고 그렇기 때문에 a_{-13}과 같은 표기도 가능합니다.)
어쨌든, 수능 수학은 학문으로써의 수학과 차이가 있기 때문에 이를 무턱대고 학문의 관점에서만 접근하려 하면 문제가 생길 수 있습니다.
또한 n을 모든 자연수로 해석하는 근거를 이전 기출문제에서 찾아오시는 분들이 계셨고, 이에 대한 반박으로 이전 기출문제를 현 교육과정 내용으로 풀 경우 잘못된 답을 도출하게 되는 경우를 제시한 분도 계십니다. 하지만 개인적으로 이건 조금 다르다고 생각이 되는게, "자연수 n"의 해석은 교육과정이 바뀌더라도 크게 바뀌지 않지만 예시로 드신 문제의 경우 교과서의 서술/정의 자체가 바뀌었기 때문에 틀린 답이 나오는게 당연합니다. 교과서 자체가 학문의 엄밀한 정의를 완벽하게 따르고 있지 않기 때문에 수시로 공격을 받으면서 수정되어 나가는거에요.
물론 이전 기출문제를 근거로 가져오는게 타당한가 역시 가치관이나 사고방식의 영역이기 때문에 논란이 발생할 수밖에 없습니다. 판단은 평가원에서 알아서 해줄거고, 이번 논란을 계기로 엄밀하게 접근하는 것보다 사고를 유연하게 해서 어떻게든 답을 도출하는 전략을 배워가셨으면 좋겠습니다. 아무리 시험이 거지같고 엄밀하지 않더라도 정시라는 방법을 선택하신 이상 거기서 점수를 잘 받는 전략을 취하는 방법 밖에 없습니다. 그게 너무 싫거나 어려우면 다른 방법을 찾아야죠. 정시가 꼭 답인 것도 아니구요.
번외로, 고등학교 교과서의 극한 / 연속함수의 정의가 얼마나 비엄밀한지 설명할 때는 다음 예시를 들면 됩니다.
(추가) f(x) = x^x
답부터 말씀드리자면 놀랍게도 1, 2, 3, 4번은 모두 연속함수이고 5번은 연속함수가 아닙니다. 간단하게 설명하자면 연속함수의 정의는 정의역에서 연속인 함수이기 때문에 1/x도 연속함수가 되고, 3, 4번의 경우 극한의 엄밀한 정의를 사용하면 연속함수임이 증명됩니다. (고등학교에서 정의하는 극한으로는 상당히 애매한 상황이 생깁니다. 정의역이 1, 2, 3, 4, 5인데 x가 2로 다가갈 때 f(x) = x가 무한히 다가가는 값이란..) 또한, 5번의 경우 정의역이 양의 실수가 아니기 때문에 연속함수가 아닙니다. 정의역의 정의에 의해 x^x가 잘 정의(well-defined)되도록 하는 x는 양의 실수 + 음의 정수 + 분모가 홀수이며 분모와 분자가 서로소인 음의 유리수이고 양의 실수를 제외한 부분에서 문제가 생기게 됩니다.
이처럼 학문으로써의 수학은 자연어적 해석이나 추론에 의존하지 않고 모든 것을 엄밀한 정의에 입각하여 생각하기 때문에 고등학교 수학과의 차이점이 명확합니다. 수능에 이와 같은 문제가 나왔더라면 교과서의 오류를 지적하는 연구 논문이 한가득 나오고 문제 오류로 또 말이 많을텐데 이런 유형은 출제되지 않아서 다행이네요.
연속함수 문제에 대한 상세 해설은 아래 링크에 있습니다.
그리고 저한테도 '손도 못 대놓고 이제와서 오류라고 우긴다' 라고 조롱하실 분들을 위해 말씀드리자면 저는 04도 아니고, 애초에 수능판과 거리가 멀기 때문에 딜이 들어오지 않습니다.. 댓글들이 정말 살벌하더군요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
25미적 100점보다 24미적 92점이 수학 더 잘하나요
-
반지름이 1인 원에 내접하는 사각형의 네 변의 길이의 곱의 최댓값을 구하여라.찍맞...
-
시대 재종 반 4
여러분 이 성적이면 시대 재종 어느 반 들어갈 수 있나여?? 목동 대치 반이 다를까요??
-
오르비에서 떡밥도 몬따라가는데 오프라인은 진짜 힘들어..
-
알려줘요
-
엉아야 17
과외 받을래? ㅎ.ㅎ
-
궁금쓰
-
어디서 싸움? 0
ㅈㄱㄴ
-
심심해요알려주시요
-
하루에 8시간 분량이라도 넘겨보고싶었는데 하반기에는 단 한번도 하지못함 이러니 내가...
-
개추 누를게요
-
ㄹㅇ
-
처음 해보는데 너무 재밌다
-
걍 궁금해서 ㅇㅇ
-
다들 화낫서...
-
설수의 정시면접은 걍 상식이 최소한도로 존재하는 사람이면 면접떨이 존재할 수 없는...
-
낮에는 코스프레부터 온갖 씹덕들이 판치는데 저녁만 되면 귀신같이 일진 포스 인싸들이 점령함 ㄷㄷ
-
배틀물 애니 특 0
중요한 회차에서 제작비 몰아쓰고 나면 그다음 회차는 눈에띄게 작화가 어색해짐
-
진짜 개힘든데 오후 5시부터 새벽2까지 단순노동만 반복하는데 너무 힘듬. 내가...
-
빨리 점공올리라고 시발 ㅋㅋ
-
그걸 해내네
-
a갤이 낫지
-
인하대 학잠 0
어디서 사요?
-
올리고 나서 10분 안에 팔로우 2명 늘었어 기뻐
-
공대남은 연애하기 개씹헬인것같음 걍 다녀보니 그렇게 느낌... 애초에 과cc자체도...
-
근데 진짜 긁히셨나봄뇨 16
아무쪼록 힘내셨으면••
-
진짜 어딜봐도 예뻐서 눈 둘 곳을 못찾았음…
-
현역이 ㅋㅋ 1
과탐을 하는데 1년만에 1 받은 사람들도 있나요? 있다면 머리가 비상해야만하는가.....
-
나 고3 4모때 불안증세 도져서 국어 한번호로 기둥세우고 8등급이었나 받음
-
성적ㅇㅈ은 많이했으니 1년 공부량이나 보고가셈
-
연애보다 7
애완너구리가 필요해…
-
지는 3만원짜리해주고 갖고싶은거 물어보면 위시리스트 있어ㅎㅎ ㅇㅈㄹ해서 봣는데...
-
이거만큼 가성비 좋은거 못봄
-
ㅇㅅㅇㅅㅇ ㅇㅅㅇ
-
혼틈새벽ㅇㅈ 12
ㅇㅇ.
-
오래된 생각이다... 사탐런 여부에 따라 1~2급간 이상 차이날듯 최상위권아니면(이건잘몰름)
-
자다가 왔어용 5
-
괜찮아 2
군대가면 연애생각안들겠지
-
외모가 중요하다는 가스라이팅에 당해서 아 나는 외모때문이야 이러는 케이스가 너무...
-
제발잠을자 !! 0
그래야내일공부를하지..
-
장거리+비용 많이 드는게 확정이긴한데 색다르고 재밌다 치바대 다니는 동갑이랑 1년째...
-
아랴 존나 이쁘네
-
ㅇㅈ 6
대신 카리나나 보고가셈
-
연애기만글 쓸라그랫는데 19
남친이 옆에서 보고서 웃으면서 화장실감 어이없어 증말
-
그래서 올해 또 갈거임
-
걍…연애하시는게 뭐 되게 특별한 일이시구나 싶어서 할 말 없어짐
-
그리운 유저들 8
시키나미 오로지 재고수대 전땃쥐 무슨무슨 늑댕이(외대 글캠) 더 있겠지만 기억안남
-
으흐흐
-
ㅇㅇ
이거지
이 글에는 감동이 있다
이거보고 서울대 수리과학과 가기로 했다
조롱하는것들이 제일 악질인듯 더불타게함ㅋㅋ
그나저나 교과서도 수학을 재대로 알려주진 못하는군요
문제가 엄밀치 못한건 납득하나 생2 20번 드립은 그냥 에휴이인듯
그나저나 mathbb 님이셨네요. 글과 자료 항상 잘 보고 있습니다. 연속함수의 정의는 작년에 수2 시간에 학교에서 발표하며 열변을 토한 기억이 나네요. 초코바 하나 들고서 “다음중 연속함수인 것을 모두 고르라” 는 문제를 냈었는데 아무도 못맞추다가 수포자 친구가 “사실 저거 다 답인거 아니야?“ 해서 초코바를 받아간 기억이... 그때 엡실론 델타 논법도 소개하고 했는데 애들 다 잤어요 ㅠㅠ
진짜 정자로기입하랄때 바지안내렸냐는 말이 개쌉공감임 ㅋㅋㅋㅋㅋ
우리 시험장에선 “또박또박” 기재하라고 나왔는데 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
이드립 개웃기네
캬
개체수 음수도 인정 안했었는데 이게 정답 정정될 가능성은 0이라고 생각..