수학 질문.. 미분 가능성과 연속에 대하여(수학 고수님들 도와주세요)
게시글 주소: https://orbi.kr/0004698222
f(x)=x^2sin1/x (x가 0이 아닐 때)
=0 (x=0)
에서 f`(x)의 x=0에서의 연속성을 알아보고자 합니다.
먼저 정의를 사용했을 때 limx->0 {f(x)-f(0)}/(x-0) = 0 입니다.
f`(x)=2xsin1/x - cos1/x 가 됩니다. limx->0 f`(x) 는 존재하지 않습니다. 진동하기 때문이죠.
따라서 f`(x)는 x=0에서 불연속입니다.
여기까지는 이해가 갑니다.
그런데 제가 궁금한 점은
limx->0 {f(x)-f(0)}/(x-0) = 0 을 구할 때 좌변의 식은 사실
1. limx->+0 {f(x)-f(0)}/(x-0), 2. limx->-0 {f(x)-f(0)}/(x-0) 을 합친 것으로 알고 있습니다.
1.식은 사실 fx의 우미분계수 이고, 마찬가지로 2.식은 fx의 좌미분계수 아닙니까?
따라서 위 내용은 x=0에서의 좌우미분계수가 같다고 해석했습니다.
그런데 f(x)=f1(x) (x가 p이상일 때) (p는 상수입니다.)
=f2(x) (x<p)
라고 하고 fx가 x=p에서 미분 가능하다고 하면
f1(p)=f2(p) , f`1(p)=f`2(p)를 만족해야 합니다.
그렇다면, 맨위에 제시된 함수 f(x)는 x=0일때 연속이므로, f`1(0)=f`2(0)만 확인해 준다면 f`(0)에서 미분 가능합니다.
그런데 사실상 f`1(0)은 x=0에서의 우미분계수, f`2(0)=0은 좌미분계수 이므로 두개가 서로 같다면
limx->0 f`(x)= f`(0) 이란 뜻 아닙니까? (f`(0)가 미분 가능하므로)그렇다면 f`(x)는 x=0에서 연속 이라고
생각되는데
네. 사실 f`(x)는 x=0에서 불연속입니다. 논리적으로 어디서 틀렸는지 모르겠습니다.
고수님들 알려주세요 ㅠㅠ(진짜 막써서 무슨 내용인지 못 알아보실수도 있음..)
--------------------------------------------------
즉, limx->+0 f1(x)-f1(0)/x-0 = f`1(0)
limx->-0 f2(x)-f2(0)/x-0 = f`2(0)
f`(0)= limx->0 fx - f0/x-0 = f`1(0)=f`2(0) (f`(0)을 구하는 정의에서 f`(0)의 좌미분계수와 우미분계수가
같아야 한다는 뜻.=>좌미분 계수와 우미분 계수가 같다면 limx->0 f`(x)가 존재하고 이 값이
f`(0)과 같아야함. 고로 f`(x)는 x=0에서 연속이라고 생각함 =>그런데 아님.. 뭐가 문제인가요?)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
서브웨이 가야지 하는데 오후에 수학 달리고나면 지져서 탄수화물말고는 눈에 뵈는게...
-
진짜 이런 과외쌤 없는듯 너무 최고임요 돈 따로 받지도 않는데 추가로 수업해주심...
-
국민의힘 이준석 대표(사진)가 5일 윤석열 대통령의 ‘내부 총질’ 문자메시지와...
-
관심좀 3
관심좀주에요
-
개념계몽 10조 기출계몽 10조
-
호루스 코드 누른게 벌써 몇번째인지 모르겟음
-
밤에 잘 자야하는데 큰일났내
-
하겠습니다
-
수학이랑 과탐은 다맞아야한다고 봐야하나요??? 국어는 작년같은경우 어디까지 허용됬나요???
-
캐리어도 들어가겠네
-
수학을 할땐 일단 시발점이랑 쎈을 같이 복습하지말고 진도만 쭈욱 다 나간다음에...
-
오늘 팝스 결과 6
제멀: 180->220 유연성:18->24 악력:46->50 드디어 사람됐네
-
사랑해
-
어서와
-
설경 재학 중인 아들 둔 이모한테 사탐런했다고 하니까 이제 나도 혹시 서울대 오는...
-
반수할려고 했는데 포기해서 판매합니다 !! 쪽찌 주세여
-
비유을 하자면 버블시대 일본으로 진입한 느낌? 빌딩이 어마어마하고 사람들은...
-
지금은 ㄱㅊ나)
-
치타는 누워있다
-
이런 식으로 아래 InDePTh 영어 독해 개념서 댓글란에 이쁜 댓글 써주시고 이...
-
졸려잉
-
강남에 왜 저런 인재(대충 디새스터라는뜻)가..
-
수2 자작 0
난이도는 중간 정도입니다.
-
다 이해하고 넘어가라였음 약간 이건 완전히 이해하고 넘어가긴 힘들것같은데? 싶은...
-
잉이거뭐지..? 2
안 매고 다니던 가방 뒷주머니에서 갑자기 13만원이 현금으로 나왓음 요즘 선행을...
-
4의규칙은 몇등급부터 풀면 딱 좋노 이거야 소리 나오나요? 1
몇등급부터 풀어야 4규 푼다고 꺼드럭 거릴 수 있나요?
-
술 한 잔 같이 하면서 대한민국의 미래에 대해 토론해보자
-
1972년 어느 날
-
목동고 생명과학 가르치는 김X수 선생님 성희롱은 아니죠 0
어케 학생한테 그런말을 서울시 양천구 목동고등학교 생명과학 김X수선생님 실망입니다
-
여행 어게인 0
-
집이 좋아....
-
나어캄..
-
정신병원 20분 일찍 왔는데 20분 쌩으로 기더리는중 4
실화녀? 버텅 일찍 들여보내 주던데..
-
안녕하세요, 수능 국어를 가르치고 있는 쑥과마늘입니다. 오늘은 이중차분법 지문을...
-
그 양반이 응급구조헬기 필요하다던 국종이햄 지원해준 거는 ㅈㄴ 유명한 일화임....
-
뭔 용어가 졸라 나오길래 이런 식으로 여백에 필기해서 꾸역꾸역 다 맞긴 했습니다...
-
지금 대선후보 3
이재명 이준석 말고 또 잇나요
-
전과에 녹취록에 온갖 구설수 퍼트려도 건재하잖아 이젠 역으로 카리스마 효과까지...
-
그래그래… 사랑한다
-
뭔가 현역때 풀어본 기억이 나는데 언제푼건지 기억이 안나요 ㅠㅠ
-
컷이 필수시절로 그거인거? 경험자있음?
-
검정고시생이라 충남 명지 충북 이렇게 쓰고 3개 논술 올인하려고 합니다 사탐 한...
-
저녁뭐먹을까요 내게답을줘
-
게속 불안해하셈
-
하필 선거 예정일이 6/3이네 ㅋㅋㅋ
-
뽑아봅시다
-
정권이 바뀐다고 기조가 바뀌면 그동안 준비한건 뭐가 되는거지 무등비 삼도극 부활설 찐임?
-
1페에 물2가 젤 많네 하....
-
(영덕=뉴스1) 최창호 기자 = 3일 산불피해지역인 경북 영덕군 영덕읍 노물리...
제시하신 식은 도함수가 불연속이지만 미분계수가 존재하는 경우를 예로 들 때 자주 등장하는 식이네요.
말씀하신 부분 중
그런데 f(x)=f1(x) (x가 p이상일 때) (p는 상수입니다.)
=f2(x) (x
감사합니다
본문에서 잘못된 점.
1. [그렇다면, 맨위에 제시된 함수 f(x)는 x=0일때 연속이므로, f`1(0)=f`2(0)만 확인해 준다면 f`(0)에서 미분 가능합니다.] ㅡ> [그렇다면, 맨위에 제시된 함수 f(x)는 x=0일때 연속이므로, f`1(0)=f`2(0)만 확인해 준다면 x=0에서 미분 가능합니다.]
2. [좌미분 계수와 우미분 계수가 같다면 limx->0 f`(x)가 존재하고 이 값이 f`(0)과 같아야함.] ㅡ> 같아야 할 이유가 없습니다.
3. 좌미분계수와 우미분계수의 값이 동일하다고 하여, 해당 점에서 도함수의 연속이 보장되지 않습니다. 연속일 조건은 좌극한, 우극한의 값이 동일하고 그 극한값이 실제 그 점에서의 f(x)의 값과 동일해야 합니다. 좌극한 우극한만 같다고 해서 반드시 연속인 것은 아닙니다.
4. 제시해주신 상황에서 잘 이해가 가지 않는다면 이 글에 제시된 함수를 사례로 이해를 시도해보시기 바랍니다.
http://en.wikipedia.org/wiki/Dirichlet_function
그냥 지나쳐갈수도 있었을 의문에 대해서 답을 알고자 하는 자세가 매우 훌륭하다고 생각합니다. 부디 그 자세 잃지 않으셨으면 좋겠습니다.
감사합니다.
1.번은 잘못된 점을 알았습니다.
그런데 2번에서 limx->+0 f(x)-f(0)/x-0 을 우미분계수로 보면 안된다는 것인가요?
3.즉 limx->+0f`(x) 가 우미분계수가 아니라는 말씀이시죠?
우미분계수와 좌미분계수는 상관없습니다. 둘 다 맞아요.
도함수의 연속성이 궁금한거잖아요?
그럼 다음 요건을 봐야합니다.
1. 도함수의 좌극한과 우극한이 같다 ㅡ> 본문에서 확인하셨습니다.
2. 이 좌극한=우극한 의 값이, 실제 그 점에서의 도함수 값과 같다 ㅡ> 실제 그 점에서 도함수 값이 정의되지 않으므로 같다고 할 수 없습니다.
이 2번 과정을 빠트리고, 1번 과정으로만 연속성을 판단하셨기에 생긴 오류입니다.
ㅋㅋ... 이해된줄 알았는데 한 번만 더 여쭤볼게요..
무슨 말씀 하시는지는 이해가 갔습니다.
근데 제가 이해가 잘 안가서..ㅠㅠ
그런데 말씀하시는 좌극한=우극한 값이 같다는것이 실제 그점에서의 도함수 값과 같다는것 아닌가요?
왜냐하면,
limx->0 fx-f0/x-0 가 정의되기 때문이라고 생각합니다.
즉, 이 값이 정의된다는 뜻은 좌극한, 우극한이 같고 그 값이
존재한다는 뜻이니까요. 또한, 이 좌극한, 우극한이 으므로
f`(0)이 존재한다는 뜻 아닌가요? 고로
f'(0) = limx->+0 fx-f0/x-0 = limx->-0 fx-f0/x-0
아닌가요?
정말 감사합니다..!!
[즉, 이 값이 정의된다는 뜻은 좌극한, 우극한이 같고 그 값이 존재한다는 뜻이니까요.] ㅡ> 오개념입니다. 좌극한, 우극한이 존재하는 것과 그 점에서의 함숫값이 존재하는 것은 전혀 상관이 없습니다.
좌극한, 우극한은 존재하지만, 그 점에서의 함숫값이 존재하지 않거나 좌,우극한 값과 다르다면 해당 함수는 그 점에서 불연속입니다.
2013학년도 9월 평가원 가형 6번문제를 보시면 해당 함수의 예시가 나와있습니다. 좌극한, 우극한은 같고, 존재하지만 그 점에서의 함숫값이 좌극한, 우극한 값과 다릅니다.
즉, "잘 가다가, 어느 한 점에서 구멍이 나 있는 함수"의 개형을 생각해 보십시오. 좌극한, 우극한 값이 동일하지만, 그 점에서 함숫값은 정의되지 않습니다.
제 말 뜻은 함숫값이 존재한다는 것이 아니라 극한값이 존재한다는 것입니다.
미분계수의 정의가 평균변화율의 '극한값'인 것 처럼요
극한값(미분계수)이 존재하므로 그 좌미분계수와 우미분계수의 값이 같다는 것이었는데.. 제가 어디를 잘못보고있는것인지요
ㅠㅠ
연속일 조건
1. 좌극한, 우극한의 값이 존재한다.
2. 이 좌극한=우극한의 값과, 해당 점에서 함숫값이 동일하다.
미분가능일 조건
1. 연속이다
2. 좌미분계수와 우미분계수가 동일하다.
좌미분계수와 우미분계수가 존재하고 서로 같다고 하여 그 지점에서 미분가능한것도 아니고, "도함수의 연속성"이 판정되는 것도 아닙니다.
연속과 미분가능하다는 것은 서로 다른거예요.
사실 지금 님께서 뭐가 궁금한건지 파악을 못하고 있어요.
차라리 종이에 적어주셔서 다시 게시물 올려주시면 뭐가 궁금한건지 잘 알수 있을 것 같은데요.
[극한값(미분계수)이 존재하므로 그 좌미분계수와 우미분계수의 값이 같다는 것이었는데] ㅡ> 이 부분이 잘못된거예요.
도함수의 불연속을 따지려면, 도함수 자체의 좌극한, 우극한을 생각해야겠죠. 도함수 자체의 함숫값과 도함수 자체의 우극한, 좌극한이 같은 값을 가지는가? 이게 관건입니다.
원 함수의 좌극한, 좌미분계수, 우극한, 우미분계수는 '도함수의 연속'과는 전혀 관련이 없어요.
음.. 도함슈의 우극한과 우미분계수가 다른가가 의문이었습니다. 사진 찍은게 있는데 지금 못올려서 아쉽네요 감사합니다
밤에 집가서 올려보겠슴다!
미분 가능 하다는것과 도함수가 연속하는건 아무 상관없는 서로 다른 개념이에요
넵..그런데 그것이 수식으로 이해가 가지 않아 사진찍어올려보려구요
모르비 사진첨부기능 미아..