[손광균T] 6평대비 2차 모의고사 해설
안녕하십니까? 손광균입니다.
2차 모의고사에 대한 여러분들의 열화같은 성원에 감사드립니다.
6월 평가원 대비 2차 모의고사 해설입니다.
교정을 한번 더 보고 올리려 했었지만
풀이에 대한 요구가 많아서 먼저 올립니다.
오류가 있으면 적극 의견을 제시해 주십시오.
검토후 반영하겠습니다.
2차 모의고사 문제는 아래 주소로 가시면 됩니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
김천이당 1
이제 1시간만 더 가면 된당 한 숨 잘까
-
에이어가 압도적으로 더 어렵다고 생각하고 나머지 영역에서 시간단축도 6평이 훨씬...
-
결석할지언정 등교하지않는다
-
성적표 온라인 0
그 한국교육평가원장 찍힌 거 말고 표 형태로 표점 확인하는 거 폰으로 안되나요 작년...
-
. 1
아기였을때 봤었던 공연이 아직도 현재 진행중이네 신기 새록새록 떠오르는 ..
-
노래방 도우미만해도 월 천만원씩 버는데 왜 안되는 공부같은거 굳이해가면서 등록금...
-
시뮬레이션이 ㅈㄴ 가서 걍 바로 자살하고싶다 하... 진짜 ㅈ같네
-
케바케인가
-
열품타그룹이 없어서 하나 들어가고싶은데 초대해줄분?
-
군모닝 4
좋은 아침
-
고경제는 제가 가야함
-
1 2 3 권 이렇게 구성되어있던데 몇개년 기출인거에요?
-
눈오는데 면접 1
내일 서울대 면접인데 ㅈㄴ지방사는데 어카냐 비행기 결항당함
-
저희 부모님은 성적에 대해 별말 없으셨습니다 그냥 모의고사 보면 잘봤니? 정도랑...
-
현재 대성패스 끊었고 김승리t 이미지t 션티t 풀커리 타려고 합니다. 근데 수학...
-
1. 몇시에 일어나는 게 적당함? 2. 기껏 일찍 일어나놓고 아침부터 공부 안 하고...
-
찜질방에서 잔다음 내일 대전 들렸다가 올라오고 싶기도 하고..
-
그냥 아빠가 말하는 한마디 한마디가 거슬리고 예민하게 반응하게 되요... 재수허락...
-
머리가 띵~ 4
머리가띵
-
이번에 김범준T의 강의를 듣습니다. 근데 김범준T의 스타팅블록을...
-
ㅇ ㅇ?
-
부산까지는 얼마나 지연되려나..
-
못간다 학교이거
-
수위 높은 장면은 안 나오겠지? 예전에 이런 장면 나온적 있어서 먼가 안 될거...
-
어떻게 예상 커트라인이 417 ㅋㅋㅋㅋㅋㅋㅋ
-
어어
-
촤하하하하핫!!극락이구나
-
전투휴무 줘라 0
이거 출근 어떻게 함ㅠㅠ
-
걍 자휴때림 0
ㅇㅅaㅇ 못가 ㅅㅂ
-
모닝여캐일러투척 19
애니는 안 보고 프사로 쓰는 사람들 보면 괘씸하거든요
-
사장님 0
저도 오늘 출근 하기 싫어요잉,,,,
-
얼버기 5
얼리 버드 기상
-
먹어도 되려나 소리때문에 흠.. 이정도는 오케이인가
-
학교 휴업하네 0
-
이번에 수1,수2 김범준T 듣는데, 스타팅블록2~5등급이 듣기에 좋다고 하시더라구요...
-
한국식 세는 나이로 25살에 교수. 남학생이 군대 갔다 왔다고 치면 4학년때 자신과...
-
승쫑인데 롤 10연패해서 밤새가지고 어떡하지 싶었는데 이런일이?
-
43이 되는 가능세계는 없겠지?? 아무리 높아도 42지??
-
돌아가는 분위기가 매우 흥미롭군요 정부가 의평원 무력화 하는걸 포기했네요? 그런데...
-
8일뒤성적표공개 0
시간빠르뇨
-
형등 급해요 0
신검 30분 지각할거같은데 괜찮음?
-
9시등교인데 10시 등교로 바뀜
-
강제얼버기 4
두시간자고기상
-
6시 기상할까 나눠서 6시반기상/6기기상은 오히려 수면패턴에 방해가 될지도
-
안돼 눈온다 1
살려줘
-
미적분 80 2
2등급 가능성 얼마나 있을까요?
-
필자는 매우졸림
-
화작 확통 생윤 윤사 24222 원점수 87 66 36 39 백분위 89 67 89...
-
축하해줘 14
히히
정의의 사도, 손광균 선생님께 Respect!
첫번째 댓글!!! 감사합니다.
더구나 뭔가를 더 주고 싶어지는 학생을 만나는 건
저에게도 행운입니다.
오... 저도 뭔가를 더 주고 싶어지는 학생이 되고 싶습니다.
이미 그렇습니다. 내공이 전해저 오는 학생입니다.ㅎㅎ
해설도 있다니 감사합니다~~~~~
저도 Peacelove합니다. 열공하세요.
감사합니다!
18번 f가 상수함수여야성립하는거아닌가요?? 그다음 문제이해를 못하겟어요!! 도와주세요!!
18번에 대한 좀더 자세한 해설을 원합니다
F(b)-F(a)/b-a=f(c)=f(a)
인c가a와b사이에 적어도 하나 존재
f(x)는 0과e^2사이에서 감소,e^2이상에서 증가하므로
a 는 0과e^2사이에서 존재하며b는x>e^2에서존재할수밖에없다
a는e^2 보다작고 c는e^2보다크고 b는c보다크므로t는e^2이다
굿!
21번 S가 파이/3에 대칭인것은 ㄴ식에 의ㅎㅐ 아는것인가요??
넵!!
폰으로쓸때 왜기호가안나타나요???쓰느라 사리나오는줄알았네
6월모의고사 꼭 백점 맞을겁니다 하핳하하
화이팅!
감사합니다
21번에대한답은요?
가르친다는게 얼마나 허무한지를 여기서 알게 되네요. 제가 답을 안해도 스스로의 토론과 고민속에서 답을 찾아 나가는걸 보면서 흥미로움과 그동안의 나의 노력이 얼마나 무의미한건지를 깨닫게 합니다. ㅎㅎㅎ
18번이 어려웠나 보네요.
여기서 a가 특정한 a가 아니라 임의의 a라는 사실을 바탕으로 생각하면 답이 쉽게 나올거라 생각했는데 많이 어려웠나 보네요.
18번 문제같은거 정말 좋습니다 무작정 시도해서 답이 나오지 않는게 좋습니다 ㅎ
고맙습니다. 이러한 생각도 한번쯤은 해볼 필요가 있을거라 생각했습니다.
대단하시네요
1회보다 확 쉬워진 느낌이 들었는데 저만 그런가요 ??
암튼 1회나 2회나 분명 다루는 내용은 전부 교과과정 안인데
그동안 모의고사에서는 쉽게 못봤던 문제들인거같아서 좋아요
감사합니다^^
감사합니다. 앞으로 더 좋은 문제들로 만날께요.
우와....근데 선생님 ebs로만 뵜었는데 네이버에 검색해보니 경력이 어마어마하시네요;;;;;;ㅎㄷㄷㄷ 교육쪽으로 들어오시게 된 계기라도 있나요 ??
감사합니다
그런데 저는 항상 20번같은 문제를 틀리는데이유가 뭘까요...?
그나저나 18번 신기하네요ㅎㅎ
최근 4년간 방부등식에 출제된 문제를 보면 2013년만 제외하고 그래프에 대한 해석문제로 만들어 집니다. 단순 무식한 계산문제를 내기도 하지만 그래프 이해를 요하는 문제가 주를 이룹니다. 이러한 유형의 문제는 기출문제가 엄청 많으니 그걸로만 연습을 하여도 충분할겁니다. 가끔 모의고사를 통해서 점검을 하면서 말이죠.
네! 정말 감사합니다!!!
18번문제요
어떠힌a b 라는게 어떤 a와 b값이오든 무조건 만족하는 t가 하나잇고 그게 e^2
이라는말인가요?
해석하기어려움..
분명 정적분의 평균값정리까지써서 a b 범위찾고 다햇는데
말뜻이너무어려워요ㅠㅠ
와 진짜 어려워요 ㅠㅠㅠ
리듬농구 85 포카칩 93인데 이거 55점 ㅋㅋㅋ