[박수칠] 적분 기호 ∫의 이해
미통기 ‘다항함수의 적분법’과 적통 ‘적분법’으로 들어가면 ∫(integral)을 배웁니다.
이미 알고들 있다시피 부정적분과 정적분의 표현에 사용되는 기호이고,
합을 의미하는 Sum의 머릿글자 S를 변형한 것이죠.
∫>
부정적분의 ∫은 도함수의 기호 d/dx와 정반대의 의미를 갖습니다.
dx와 짝을 이뤄서 ∫ dx의 형태로 사용되구요.
함수 F(x)의 도함수가 f(x)이면
라고 쓰며, 이때 f(x)의 임의의 부정적분이 F(x)+C이므로
와 같이 씁니다.
보다시피 부정적분에서 ∫은 합이라는 본래의 뜻과 무관하게 쓰였습니다.
합이라는 의미를 갖는 것은 정적분에서죠.
∫>
정적분의 정의는 함수의 그래프와 x축 사이의 넓이를 구하는 것에서 출발합니다.
함수 y=f(x)가 닫힌 구간 [a, b]에서 연속이고, 이 구간에서 f(x)≥0일 때
함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분한 다음, 양 끝점과 각 분점의 x좌표를 왼쪽에서부터
차례로 x0(=a), x1, x2, …, xn(=b)이라고 합니다. 다음으로 각 분점을 지나면서 x축에
수직인 직선들로 도형을 자르고 이웃한 두 수선 가운데 오른쪽 수선을 높이로 하는 직사각형을
만듭니다.
(2) 이때 왼쪽에서 k번째 직사각형의 넓이와 모든 직사각형의 넓이 합은 다음과 같이
표현됩니다.
(3) 여기서 n→∞이면 구간 [a, b]에 존재하는 분점이 무수히 많아지기 때문에
각 분점의 x좌표들은 연속적으로 변하는 실수가 된다고 할 수 있습니다.
따라서 각 분점의 x좌표의 일반항 xk는 이 구간에 속하는 임의의 실수 x로 바꿀 수 있죠.
또한 직사각형의 가로 길이 는 0에 한없이 가까워지기 때문에 도함수의 기호와 같이
dx로 바뀝니다. 이때, 각 직사각형의 넓이는 다음과 같이 표현됩니다.
(4) (2)에서는 직사각형의 넓이가 k에 대한 식으로 표현되기 때문에 직사각형들의
넓이 합을 Σ로 표현할 수 있지만, (3)에서는 k가 없어졌기 때문에 Σ로 이들을
더하는 것은 불가능합니다.
따라서 직사각형의 넓이를 더하기 위해 새로운 기호가 필요한데 그것이 바로 ∫입니다.
x좌표가 x인 곳에 생긴 직사각형의 넓이 f(x)dx를 x=a일 때부터 x=b일 때까지 더하는
것은 다음과 같이 표현할 수 있습니다.
이처럼 Σ는 불연속적으로 변하는 직사각형의 넓이 의 합,
∫은 연속적으로 변하는 직사각형의 넓이 f(x)dx의 합을 표현합니다.
(부정적분에 ∫이 쓰인 이유는 정적분의 기본 정리에 따라 정적분의 계산에
부정적분이 필요하기 때문입니다.)
이렇게 이해하면 좌표축과 도형 사이의 넓이, 또는 도형의 부피를
정적분으로 간단하게 표현할 수 있죠.
<두 곡선 사이의 넓이>
두 함수 y=f(x), y=g(x)가 닫힌 구간 [a, b]에서 연속이고, f(x)≥g(x)일 때
두 함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 방향으로 수선을 그어서 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에 직사각형을 그리구요.
이 직사각형의 가로 길이는 , 세로 길이는 f(xk)-g(xk)입니다.
(2) n→∞이면 (1)에서 만든 직사각형의 가로 길이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 직사각형의 높이는
f(x)-g(x)가 됩니다.
(3) 따라서 도형의 넓이 S는 다음과 같이 계산됩니다.
<단면적을 아는 입체도형의 부피>
아래 그림과 같이 점 (x, 0, 0)에서 x축에 수직인 평면으로 잘랐을 때,
단면적이 S(x)인 입체도형이 있다면, 그 부피 V는 다음과 같이 계산할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 평면으로 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에서 평면 x=xk로 잘린 단면을 밑면으로 하는
기둥을 그리구요. 이 기둥의 높이는 , 단면적은 S(xk)입니다.
(2) n→∞이면 (1)에서 만든 기둥의 높이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 단면적은 S(x)가 됩니다.
(3) 따라서 도형의 부피 V는 다음과 같이 계산됩니다.
그럼 예제 하나 풀어보죠.
2014학년도 수능 B형 13번 문제입니다.
(1) 먼저 부피를 구하려는 회전체를 그림으로 표현하면 다음과 같습니다.
직선 l과 쌍곡선 C의 방정식을 연립해서 풀면 교점의 좌표는 (0, 0), (3, 2)가 되구요.
(2) 회전체의 바깥면은 직선 l이 회전해서 만듭니다.
이 회전체의 부피는 다음과 같이 구할 수 있죠.
(3) 회전체의 안쪽면은 쌍곡선 C가 회전해서 만들고,
부피는 다음과 같습니다.
(4) 따라서 구하는 회전체의 부피는 (2)-(3)으로 구할 수 있죠.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
국밥에 공깃밥 2개 먹는 게 돼지 소리 들을 일인가요 ㅠㅠ 0
진짜 아니잖아
-
데굴데굴 구르면서 들어갈텐데
-
숙대약대 논술본거 잘한거겠지 서울대 안될거같아서 약대논술 쓴거 다감
-
흐음
-
이게맞나... 원래도 이정도 쉬면 이렇게 되긴 했음ㅠ 남들은 안그러시나요.. 지금...
-
전 다 틀렸어요
-
밐 일러 6
밐밐
-
일반고 예비고3입니다 이번 학기부터 내신보다 정시에 중점을 두고 공부하고 있어서...
-
우리 누나가 이대 다녀서 ㅈㄴ이해가면서도..
-
이분 생각났음 ㅅㅂ
-
1등급 뜨겠지 하 ㅅㅂ...
-
? 확통을 버릴 필요가 없는거 같은데
-
커리가 안 올라오는 거 보면 올 해 물리1,통과만 하시려나 싶은데요. 교재주문이나...
-
기하 풀어야된다고;;
-
군대와서 놀란 거 10
웃음체조가 진짜 있다
-
제곧내ㅇㅇ 화작 89점 미적72점 정법사문 둘다 44점? 인데 찍은거 제외임 아니...
-
돈이 마니나감 한달에 고정 -60 ??
-
그런 느낌이 듦뇨
-
3등급 초반인가요?
-
이번 정시 때 이말 꼭 하고 싶었음 작년에 내가 약대 선택하고 나중에 후회돼서 잠도 안왔다
-
걍 버리는게 맞겠죠? 돈 아깝긴 한데 다시 푸는 건 크게 의미 없어보여서 올해 9...
-
4순데 생2 지1 어떤가요 생2가 노벱니다 물1 고여서 버립니다 의대 목표구요...
-
작년보단 어렵지 않았음? 작년보단 틀릴만한거 있었던 거 같은데
-
150/350이면 합격 ㄱㄴ?
-
D-355 공부 1
-
걍 반수할까 7
서성한은 적당히 쓰면 될것같긴한데 쌩재수가 갖는 이점이 있을까요 반수에 비해서.....
-
기하랑 확통때문에 진짜 미취겟다 밤 새야지
-
(밸런스게임) 만약에 미래 아내라면 ?? N수 최대 몇까지 이해가능..? 예쁜...
-
국어 4 데미지가 너무 큼 3만 떴어도 그나마 나을텐데
-
이새끼 진짜 3
https://youtube.com/shorts/Gx0SYhfeiVg?si=Yb8cQ...
-
잘생기면좋겠다 3
-
요즘은 특히 진짜
-
이러면 또 학력저하라고 틀딱들이 비웃겠지
-
05년생 여자이고 현역 때 정시로 연고대 이상 생각했지만 수능 때 국어에서 크게...
-
와 현우진t vs 윤도영t 인스타 댓글서 시비붙음 ㅋㅋ 5
이정도면 붙나요?
-
수능을 계속 보기로 마음먹음
-
군대는 빨리오자 20
가 아니라 어느 나이든 여기서 1년 반을 지낸다는 게 인생 손해다
-
올수 1임. 유학 갔다온 적 있어서 리스닝은 쫌 칠 거 같은데 읽기도 할 만한가요?
-
아오 17
아오 이따구로 그릴 거면 걍 격주 방영해라 본편 실제로 보면 더 가관임 무슨 AI...
-
진짜 올해 깡표대학밖에 쓸 곳이 없는데 투과목 만표 나락가면 저 ㅈ됩니다 ㅠ...
-
"수능에서 1등급을 받으면 됩니다."
-
어디 추천하시나여?
-
국어인데 6월 92 백분위 99 9월 97 백분위 93 수능 98 백분위 98이거나...
-
동덕여대 ㄹㅈㄷ 0
(동덕여대 교수가 학생들에게 보냈던 메일)
-
지금 10만원 할인하던데 나중에 더 떨어지나?
-
수리논술 처음인데 총평을 모르겠어요 일단 다풀긴 했는데
-
화작 미적 쌍윤 기준
-
어케 불리나요??
-
22: 342 23: 123 24: 221 25: 142 진동폭 뭐임
-
뱃고동 소리가 진짜 긴장 맥스됌 올해 다른거여서 다행이였음
부정적분에 적분구간이 있을 수는 없어요 수정해주세요
본문에서 어느 곳을 얘기하시는 건가요?
거의 맨 윗부분 말씀하시는거 아니에요? 이미지로는 두번째쯤?..
이런 실수가 있는지 몰랐네요...
수정했구요, 두 분 모두 감사합니다.
ㅎㅎ 좋은글 감사드려요. 비록 전 문과지만ㅜㅜ 끝까지 이해해보려고 노력해봤네요. 감사합니다!^^
앞까지는 문이과 공통입니다. 어려운 부분 있으면 질문 주세요~ ^^
고맙습니다