합성함수의 수학적 의미
올해 수학 정도는 그냥 무지성으로 문제 풀어도 다 맞거나 하나 틀려서
무지성으로 풀다가 탁 막힌 문제가 하나 있는데
f(f(x))=f(x) 관한 문제 였는데
이 합성함수가 갖는 의미는 무엇인가요?
예를들어
f(g(x))=x 면 f,g 는 역함수 관계이다 이런거처럼 의미를 해석할수있나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현티가 말하는 야채가 3번야채였음....... ㄹㅇ있는거였군요....
코런건 없어용~
밑에식은 항등식이고 위에식은 방정식이에용~
방정식인건아는데 그 근이 갖는 특징 예를들어 f(a)=a 이면 성립하듯
f(x)=x 위의점 이거나 또는 ~~~ 이랗게 특징을 물어본가에여
f(x)=u로 치환하면 f(u)=u를 만족시키는 u에 대해 f(x)=u인 모든 x가 근이지요
위에가 항등식일경우 증가하는연속함수는 저항등식을 만족하는 함수가y=x뿐이고
감소하는연속함수는 f가무수히많은데 이함수들은 전부 자기자신이 y=x대칭함수입니다
방정식일경우 치환후 진행
걍치환 ㄱ
f(f(x))=f(x)가 방정식을 말씀하시는 거면
두 함수 y=x, y=f(x)가 만나는 x에 대해서 대입해서 식의 값이 f(x)가 되는 다른 근도 방정식의 근이 됩니다.
모든 실수 x에 대해서 위의 조건이 성립하고, f(x)가 역함수가 있다면 f(x)=x 입니다.
역함수가 없다면 그냥 조건 그대로인 함수 입니다.
역함수가있다고 y=x로 단정지을수없지않음?
증가하는함수여야될텐데
왜요 그냥 양변에 f inverse 합성하면 되는데
천잰가
까마득히옛날에 한기억이왜곡된듯
역함수는 일대일함수가 전제조건이라 역함수라 할 수는 없습니다만, 증가구간과 감소구간으로 흐름을 분리해서 보면 각각을 역함수관계로 해석해서 근을 구할 수 있습니다.