2천덕) 작년 연대 수리논술 오후 2번 문항
먼저 문제와 해설 올립니다
제가 의문인 부분은 (x1=r인 경우)+ (x2=r인 경우)+ .... (xk=r인 경우)=정답 인데
이렇게 계산하면 (x1=x2=r인 경우), (x2=x3=r인 경우), 등등 이런 경우의수가 중복으로 세어지는거 아닌가요?
아무리 봐도 이렇게 중복으로 세어지는 부분을 제거해주는 식은 없는걸로보아 중복이 안된다는소리인데
왜 중복이 아닐까요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전근대사를 지나치게 축소시킨듯 전근대사가 남아있는 기록이나 사료가 근현대사에 비해...
중복으로 세어야돼요 표1에서보면2/2/1일때 2가 나오는 횟수 2개로 계산하는거처럼요
이 문제는 n에다가 4,5정도 숫자 넣고 직접 나열해서 생각해보면 훨씬 이해가 빠름. 예를 통해 이해하는 것도 논술의 중요기술입니다!
님은 k개를 다 구분지어서 보려고 하는거 같은데 그냥
다 동일한 ㅁ로 보고 풀어보세요 어차피 구하는 건 순서쌍이 아니라 갯수잖아요
말그대로 “횟수” (또는 갯수)에 주목하세요
순서쌍이었으면 님말대로 중복되는 거 구분해야되는 게 맞는건데 아니니까 구분하지 않는거죠
예를 들면 님 설명처럼 x1=x2=2이고 x3=•••=xk=1이라고만 생각을 해봐요
이때 x1=2를 기준으로 봐도 이때 나오는 횟수는 2번이고
x2=2를 기준으로 봐도 나오는 횟수는 2번이니까
갯수측면에서는 겹치는 게 아니라 “입장이 동등한 거”
로 봐야죠
아래 설명으로는 이해가 되는데
구분을 왜 안하는지 이해가 안가네요
갯수니까요 순서쌍이 아니라요
k개중에 a개가 같아도 그 같은 경우를 구분하는게 아니라
아 그냥 같다로 인식을 해야죠 같은 것끼리 구분을 하진 않잖아요 일반적으로
구분을 하는거니까 중복조합을 쓴거 아닌가요?
중복조합은 그냥 일반적인 방정식의 해의 개수 구하는 문제의 풀이방법입니다 그래서 쓰인거고요 혹시 현역이시면 확통을 한 번 보시는게 좋을 것 같습니다
님말처럼이면 (x1,x2)=(2,2),(2,2)로 본다는 건데요
그래야죠 (2.2)는 2가 2번 나온거니 2번세야하니까 다르게 보는게 맞다고 생각하는데
이 설명이면 이해가 될지 모르겠는데 x1이 r인 경우는 이해가 가면 x2가 r인 경우는 그냥 x2자리에 x1을 넣는 경우라고 생각을 하세요 그럼 자리만 바뀐 거지 결국 나오는 경우에 대한 건 안바뀌죠 그러니 나오는 갯수도 결국 동알한 거구요 (그리고 혹시 x1=r이라는 게 x1만 r이라는 걸 의미하는 건 아니라는 거 아시죠?)
제일 자세히 설명하셔서 2천덕 지급완료
x1 이 r이고 x2 가 r인경우 각각 중복해서 계산되요 ex 위의 예시에서 x1 =2 라했을때 나오는 경우의 수가 2개 (2,1)x2 가 2개 x3가 2개인것처럼