벡터=좌표라고 생각하면 큰 낭패
[기하 선택자(또는 수리논술대비)를 위한 칼럼]
기하, 즉 도형에서 가장 중요한 것은 점이에요.
모든 도형은 점으로 이루어져 있기 때문이죠.
도형에 대한 연구는 고대 그리스 시절부터
아주 활발하게 이루어졌습니다.
직선, 각, 삼각형, 원 등 우리가 알고 있는
평면도형에 대한 대부분의 성질은
무려 2천년전에 유클리드님이 다 정리해 놓으셨다죠.
그런데 미친넘천재 유클리드도
정의하지 못한게 하나 있으니
그것은 바로 '점의 위치'입니다.
우리가 중학교때까지 배우는 도형들은 위치가 없죠.
그냥 어딘가에 있는 삼각형, 원 이렇게 배우잖아요.
고등학교 수학에서
점의 위치를 나타내는 방법을 두 가지 배우는데,
첫번째가 좌표로 점의 위치를 나타내기
두번째가 벡터(두두둥장)로 점의 위치를 나타내기
이 두가지는 아예 개념이 달라요.
그림으로 표현하면 아래와 같습니다.
1. 점의 위치를 x, y 좌표로 나타내는 방법.
익숙하죠?
모든 점의 위치를 원점을 기준으로 생각하는 것이죠.
생각해서 존재하는 데카르트님이 좌표평면을 떠올렸다네요.
2. 점을 가리키는 벡터를 이용해서 나타내는 방법
원래 벡터는 위치가 아니라 크기와 방향으로만 정의가 되는데
모든 벡터의 시점을 통일시키기로 약속하면 한 점과 어떤 벡터는
반드시 일대일로 대응이 되는거죠.
이걸 점의 위치벡터라고 합니다.
따라서 그냥 위치벡터가 아니라,
점A의 위치벡터, 점B의 위치벡터인거에요.
그럼 좌표로 하면 되지 뭐하러 굳이 왜 벡터로 점의 위치를??
이라고 생각할 수도 있겠네요? 그 이유는 뭘까요?
벡터로 하는게 편한 경우가 있어서에요.
좌표로 점의 위치를 나타내면 원점을 기준으로 해서
점의 위치를 절대적인 값으로 나타냅니다.
그런데 점의 절대적인 위치를 알고 싶은게 아니라
이 점이 쟤랑 걔 사이에 정확히 중간에 있어.
아니면 얘는 쟤랑 거리가 몇이래.
이런걸 표현하고 싶다면? 굳이 좌표가 필요없어요.
점들 사이의 상대적인 위치만 있으면 되니까요.
이럴 때는 벡터가 훨씬 편하네요.
예) 점P는 점 A와 점 B의 중점이다.
이걸
이런 식으로 표현할 수는 없겠죠?
그런데
벡터로 표현하면
이렇게 표현을 할 수 있어요.
점은 연산이 안되지만 벡터는 연산이 되니까요.
직선이나 원 같은 도형의 방정식도
위치벡터로 나타내면 훨씬 편리하답니다.
물론 벡터의 용도는 여러분의 상상 이상으로 훨씬 더 많아요.
여러분이 즐겨하는 게임에서
벡터가 광범위하게 활용되기도 하죠.
그리고 대학에서 배우는 벡터는
평면기하와 별로 상관이 없는 추상적인 개념이고....
설명하자면 끝도 없는데
일단 평면벡터만 생각해서 예시를 들어봤어요.
[결론]
여러분이 기하 선택자라면 (그래서 읽고 있겠지만)
위치벡터의 개념부터 제대로 잡고 시작하세요.
만약 위치벡터를 이해 못하면,,,,,
갑자기 나오는 벡터에,,, 도대체 이걸 왜 배우는건지,,,
삼각형 평행사변형, 그림놀이 열심히 하다가
갑툭튀 등장하는 내분점 공식같은걸 보면서 이건 또 뭐지...
배운건데 왜 또 나오지.... 그러다가 준킬러님 두두둥장
하시면 손도 못대는 경우가 생겨요.
기하에서는 30번 레벨 벡터문제까지
반드시 맞추도록 대비해야겠죠?
그래야 미적분 선택자에게 불리하지 않으니까요.
벡터는 확실히 잡고 갑시다!
------
여기까지는 정보성, 아래부터는 잠시 상업성을 띠는 점 양해부탁드리며...
[수업안내]
저는 솔직히 올해 수업 준비하면서
기하는 안해도 될까? 생각을 했더랬죠. 별로 없을거 같아서요.
그런데 기하수업에 대한 학생들의 문의가 엄청 많은걸 보니
수능 대비용 현강이 별로 없는 듯 해요~
그래서 기하를 개념부터 기출까지 풀버전 진행하기로 했습니다.
장소는 대치오르비! 시간은 매주 화요일 6-9시!
현장강의 + 라이브 입니다.
2월 <알고리즘- 기하>
4주간의 컴팩트 개념 완성 (노베 가능)
3월 <레퍼런스 - 기하>
4주간의 기출 순한맛 완성
(이후에는 약간 매운맛 예정입니다.)
2월부터 다 들으면 총 2번의 싸이클을 돌게 되니까
2달만 들어도 기하에 대한 감이
확실하게 잡힐 거라는거 자신있게 말씀드릴게요.
지난 2월 수업은 영상으로 수강가능하니까 기출과 병행해도 되요.
물론 기출부터 바로 시작해도 되구요.
이번 <알고리즘 - 기하>에서 벡터 수업 듣고
학생들이 신세계라고 감동했더랬죠.
기하러는 다들 오세요. 제가 끝까지 책임지겠습니다.
수강등록 링크
https://forms.gle/mPnn1kZhEUpNbxZd8
기하 말고도 수2/삼차함수 등 수업이 많으니 클릭해서 보세요~
평면도형과 도형의 방정식을 총정리하는
<아름다운 시작 - 도형>도 강추입니다!
문의 : 대치오르비 02-3454-0207
/ 010-6705-0209 (문자가능)
칼럼이 도움되셨다면 좋아요와 팔로우 부탁드릴게요.
꿈과 희망의 상승효과
수학강사 이승효였습니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오르비 검색해버림 나 ㄹㅇ 옯창인가...
-
국어 수학 영어로다 메가로 듣고 탐구만 임정환 들으려고 삿는데 사탐도 메가로...
-
조발 없으면.
-
ㅠㅠㅠㅠㅠㅜㅜㅜㅜㅜㅜㅠㅠㅠㅠㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅡㅠㅜㅠ 올해가 최적의 기회였는데...
-
빨리 와라
-
집독학해서 재수 너무 힘들었어? 과탐 못버려서 수능 망했어? 원서영역을 컨설팅...
-
니들이 중대 와서 날 백날천날 찾아봤자 절대 날 특정할 수 없음
-
뭐야 고대의대엿자너..
-
성대 조발 0
언제 할까요?
-
뒤에서대학얘기함 나무서워
-
저능아처럼 행동함 예를 들어 너 어디살아? 노무현 수능 잘봤어? 엉덩이 대학...
-
인스타 보다가 4년연속 수능 수학 100점 발견함 14
ㄹㅇ어케햇노? 부럽다
-
저는 고3때랑 재수때 모두 수능끝나고도 생리를 안했거든요 고3때는 수능끝나고 1월에...
-
선넘질문 6
을 제가하겠습니다 님들 여친없죠?
-
일단 오르비언들은 현실적으로 넓은의미의 지성인에 속함
-
선넘질받해볼래요 13
재밌어보여 질문좀
-
재수고민 2
원래 군수 할라했는데 공군 스펙쌓고 신검받고 하면 5월안에 입대를 못함. 그래서...
-
선넘질받 10
나도 해볼래
-
그 다음으로는 뉴턴역학시간해석열역학전기력자기장파동빛반사가 재밌어요 그리고 일과에너지는 재미없어요
-
저도 질받 18
아무거나 ㄱㄱ 신상이나 너무 과한 것만 아니면 적당히 선 넘어도 ㄱㅊ 설거지 하고 옵니다
-
진학사댓 뭐지
-
진짜 미친거아님? 아직까지 안오네 대성 들으러간다 ㅅㅂ
-
알바 추천점여 2
또래 많은 사람 많은 알바 없나여 편의점 카페 피방 이런 혼자나 둘이서만 하는...
-
뻥임뇨
-
20살 모쏠녀인데 15
대학가면 모쏠 탈출할 수 있을까요 ㅠ..
-
여기서도 찐따야
-
독해의 끝 16
여러분의 독해의 끝. 국어 독해에 있어 가장 중요한 것이 뭐라고 생각하나요?
-
선넘ㄱㄱ 4
네
-
크게 보자면 인서울 수도권 지방 전문대 고졸
-
상당히 높던데.
-
문제대충 봣을땐 사고력보단 걍 범위가 개넓어보이던데
-
저 수리논술 진짜 잘봐줄 자신있는데 경력없어서 인기없나바요 제 전문분야가 서술인대
-
중경외시에서 이번에 설대 약스나 떨어지면 연대 교차로 갈 듯함 대깨 메디컬이라...
-
300명 뽑는 대형과고, 초반엔 최초합, 중간부터 추가합격으로 바뀌고 그대로...
-
학벌 좋은 ㅂㅅ들많네 15
오르비를 보며 느낀다 이래서 우리나라 정치판이 개판이구나
-
질문을받아요 21
저는 순수하기때문에 선넘으면 고소할거에요 ㅜㅜ
-
개정이후 독서 문학 언매 22 상 상 중상 23 중상 하 중상 24 중 상 상 25 ? ? ?
-
안하면 도태됨?
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
중경시 컴공인데 내년 6월 전역이라 군수도전해서 26,27수능 응시로 더 높은 학교...
-
그래야 나도 잘생겨지거든
-
노래가맛집이야
-
사문vs경제 16
진짜 고민되네...
-
요루시카노래는 3
후렴에 잔잔하고 부드럽게 깔리는 나부나 코러스가 좋음
-
선넘질받 10
흐흐
-
갠챠나 1
닝닝닝닝닝 니링링닝닝닝
-
선넘질받 오픈 14
ㅈㅇ스토리 풀러감
궁금했던건데 신기하네요...
오호~ 그렇군요 :-) 궁금했던게 뭔가용
기하 시작한지 얼마 안됐는데 좌표있는데 벡터가 무슨 용도인지, 위치벡터는 정확히 뭐하려고 쓰는건지 궁금했는데 벡터는 연산이 되니까 쓰는 거였네요
적절한 칼럼이었군요~ 또 질문 있음 남겨주세요 :-)
벡좌해~ 벡좌해~
고고~
위치벡터가 점과 벡터를 일대일 대응시키는 tool(?) 이라는 걸 망각하는 경우가 있더군요. 그런 점에서 유용한 글인 것 같아요ㅎㅎ 항상 글 잘 보고 있읍니다
좋은 댓글 감사합니다 ^^
제가 수업할 때 강조하는 내용이랑 똑같아서 반갑네요. 수상에서 내분 외분 무게중심 구하는거 보면 점끼리 연산할 수 있는 것 같지만 점끼리 더하고 빼고 실수배한다는 개념은 있지도 않고 생각하려 해도 어색하기 그지 없다.
하지만 시점을 원점으로 원점을 종점으로 잡는 순간 벡터가 되어 모든 게 자연스워지죠. 점의 연산이 이상하고 어색하니 시점 잡아버려서 모든 것을 호환시키는 식의.
이는 벡터의 덧셈과 뺄셈이 성분을 통해 재정당화되며, 실수배를 통해 시점과 종점을 지나는 직선 위에 실수배된 벡터가 모두 나타나므로 실수배의 의미 또한 재정당화되며, 실수배와 덧셈뺄셈을 합쳐버리면 내분 외분으로 두 종점을 지나는 직선을 모두 설명할 수 있다는 것을 통해
한 직선 위에 있지 않은 세 점(공통원점과 각 종점)에서의 상황 3C2개를 모두 연산을 통해 이야기할 수 있게 해주죠.
그렇군요~ 댓글 감사합니다.