빡모2권1회나형 문제 2개만 풀어주세요...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
왜깼지 1
-
누구 더 추천함?
-
걍 빈 자리가 없는데 최저가 어떻게 됐더라.....
-
얼버기 0
인나자마자 핸드폰 중
-
연대 현재상황 4
그냥 노답 이제 ㄹㅇ 스카이라는 단어도 한물간듯함 의치한약수가 이 스카이서성한이라는...
-
학교 때매 늦는 거 봐주나요..? 시대 강대 둘 다 전화로 물어봤을 땐 안봐준다고...
-
왜 고민하는 지 모르겠누? 강대 시대 둘 다 해봤고 독재도 해봤지만… 시대가… 아...
-
2년 째 듣고 있는 노래인데 진심 고트
-
이번역반포 0
세종대사수
-
대부분 육군들은 지원하면 무작위로 보직이 결정되던데 차라리 운전병을지원하면...
-
재밌겠군
-
확통 경우의 수 문제 나오면 경우 다 세서 답안지에 적어볼게요
-
저는 보니까 m=3 최소인 거 안 걸러냈음 21번은 a+b=11로 답 냈음 진짜 왜...
-
가천대학교 5
학교 좋다
-
좀 ㅈ같고 하 사람 만나기도 싫고 건강 박살내가면서 공부했는데 결과가 그러니까 난...
-
풀이는 다 기억하니까 답만은 써도되나
-
시대 강대 3
먼저 확통사탐이고요... 나이가 좀 있는 할미입니당 ㅠㅠ s2랑 시대 중에...
-
아마토포 쏘는거임? 으히히
-
늦은나이에 약대 기적적으로 붙게돼도 문제네
-
세종대로가자 0
사당역가는중
-
병신마냥
-
아 ㅈㄴ 졸린디 0
가는 길에 잠들거 같다는 이상한 느낌이,,,
-
얼버기 3
-
다리떠는거 정도는 참을 수 있죠? 예..
-
목적지는? 0
외대앞역.
-
작년 합격자 평균 75.4점. 올해는 작년보다 계산도 많고 좀 복잡한 편. 작년보다...
-
요약 : 만1세 메이져한 선천성 심장기형 수술후 대동맥 캐뉼라가 이탈하여 발생한...
-
밤샘 주술회전 시청 ㅋㅋ
-
의대증원분 대부분은 수시 지역인재 전형이라서 이미 수학 2-3등급 맞은 애들이 꿀...
-
얼버기 0
냥대 논술 두개재
-
내년 고3이고 고2 물1화1지1 고3 물2화2 선택했는데 수능 화2지1 할까요 생1지1할까요
-
ㅇㅈ 5
펑
-
군대에서 수능을 2번 보는데 , 군대 첫수능 보고 합격만하고 다시 군대인데 이...
-
ㅇㅈ 1
나만큼 한사람은 없을거야
-
비문학 문학 상관없이 추천좀여 라노벨x 수능교재x
-
암기랑 말빨이 문제네 하 평소에 말 잘 못해서 일부러 더 철저하게 하긴 했는데...
-
노베인데
-
아내가 웃옷 벗고 아파트 문 열어놓고 감자 깎다가 장면 바뀌고 아내가 자기의 둥근...
-
나도 ㅇㅈ 5
제발 박제되지 마라탕
-
기차지나간다 6
ㅠㅠ 10시에 학교를 가야해요 ㅠㅠ 부지런행
-
ㅇㅈ 7
총 68페이지 ㅋㅋㅋ 뭔 시험범위냐
-
자러가면 스탑
-
동아리 안해 연고전 아카라카 안가 rc안해 교양도 다 남초야 그리고 걔들도 다...
-
수면의 질 난리났다 10
걍 맨날 중간에 깨네 오늘은 머리까지 아프군
-
과탐 두 개는 백분위 96정도이고 국수는 2 3인 상황에서 최대한 유리하게 갈 수...
-
나도 ㅇㅈ 6
제발 박제되지 마라
-
그럴러ㅕ면 전문직이 되어여할텐데……
-
서울로 가고 싶어..
-
재수생 용돈 5
얼마가젓당함?
행렬은 왠지 지난 번에도 누군가 올렸던 거 같은..
ㄱ. XY=E 라 합시다. (A^-1 X B^-1 ) (BYA) = A^-1 X Y A = A^-1 A = E 이므로, BYA가 역행렬. 따라서 존재.
ㄴ. 좌 = A^-1 (A+B) B^-1 = (E + A^-1 B) B^-1 = B^-1 +A^-1. 마찬가지로 우변 계산해보면 동일함.
ㄷ. ㄱ에 X=A+B 대입해보면 참임을 알 수 있음. ㄱ,ㄴ,ㄷ 모두 참.
아래문제.
ㄱ. (미분가능함수인) g(x)는 그 도함수인 f(x)값이 0이면서 + -> -로 변하는 곳에서 극대. 문제의 f(x)그래프로부터 g(x)가 x=1에서 극대임을 알 수 있음.
ㄴ. f의 그래프에서 x절편(1,0)을 A, y절편을 B라 하고, (1, f(0))을 점C라 할게요.
g(1)은 그림에서 0~1까지 그래프f(x) 아래쪽(x축 위쪽)에 있는 영역의 넓이이므로
삼각형OAB넓이보다는 크고, 직사각형OACB넓이보다는 작음.
삼각형OAB넓이=f(0)*1/2, 직사각형OACB넓이=f(0)*1. 따라서 참.
ㄷ. 분명 f(x) g(x) < f(0)x (x=0제외)
이 식의 양변을 다시 x에 대해 적분하면 (0,1)에서 적분 g(x) dx < (0,1)에서 적분 f(0) x dx = f(0)/2. 따라서 참. ㄱ,ㄴ,ㄷ 모두 참.
아래문제 ㄷ번풀이는 직접 생각해내신거에요??
행렬문제 ㄷ번 잘 이해가 안가요....
넵.. 혹시 답에도 똑같이 있나요? 왠지 그럴 가능성도 클 거 같고요..ㅎㅎ
위에 ㄷ은 ㄱ이용하면 되는데, ㄱ에다가 X=A+B대입하면
A+B의 역행렬이 존재하면, A^-1 (A+B) B^-1 의 역행렬도 존재! 라는 명제를 얻습니다. 그런데 A^-1 (A+B) B^-1 = (E+ A^-1 B) B^-1= B^-1 +A^-1이니까, B^-1 + A^-1 의 역행렬도 존재한다는 것과 동치이지요. 그래서 ㄷ참이고요.
위에문제 엄청간단하게풀어드림
ㄱ은 세행렬 각각역행렬존재하므로참
ㄴ은 전개해보면 참
ㄷ은 ㄴ을이용 일단 좌변 전개하면 A역+B역 이나옴(폰이라서양해좀요)
ㄷ의전제때문에 우변이 역행렬존재함을알수있음 그러므로 ㄷ도참
감사합니다...이해됐어요!
아래문제 ㄴ은... 도형의 넓이 비교로 생각해주세요
1/2f(0)은 높이f(0), 밑변 1인 삼각형의 넓이
g(1)은 (0,1)범위에서의 f(x)의 적분값
f(0)은 높이 f(0),밑변1인 사각형의넓이
주어진 그림에 직접 그려보시면 이해가 빠르실거예요
ㄷ은... g(x)의 그래프를 이용해서 ㄴ과 비슷한 식으로
1/2f(0)은...
g(x)에서 x에 접하는 직선의방정식을 그리구요 y=f(0)x 이런식으로 나올겁니다
저 방정식은(1.f(0)) 을 지나겠죠?
밑변1, 높이f(0)인 삼각형의넓이가 바로 1/2f(0)이네요...
그러니 왼쪽에 주어진 적분값과 그 삼각형의 넓이를 비교해보시면 되요
기출에서 봤던 논리 같은데 찾아보려하니 어디에 있는지 못찾겠네요 ㅎㅎ;;;
2009년이엇던거 같아요. 감사합니다