2012학년도 수능 수리가형 21번문제 풀이 좀 깔끔한거 없나요?
메가스터디에서 기출 풀이해주는거랑 입시플라이기출문제집풀이나 인터넷 돌아다니는 풀이
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적77 0
메가에선 3뜨는데 미적3틀 77은 2 안될까요..
-
낫지 않나 탐구는 모집단 풀 자체가 다르니 유불리가 당연히 있을 건데 국수는...
-
정말로 입이 험해지지 않고 마음에 여유가 생긴 느낌
-
수능 찐막트? 15
응애...
-
경제 선택자가 그렇게 많은지 몰랐지 나는.. 다 여기있었구나
-
윤도영이랑 비교하고 있던데 그정도에요?
-
히히
-
사탐런 과목 추천좀 10
보통 이과가 사탐런하면 뭐뭐 주로 함 25수능은 물1지2 했음
-
이공계 질받 35
서울대 공대에서 썩고 있는 늙은이입니다
-
본인은 장수면서 재수인 나보다도 이번 수능을 못 봤던데 그럼 본인은 좆같이도 노력을 안 한 건가?
-
덕코줍줍하기 6
-
호감오비르언 7
덕코주는오비르언
-
EBS 등급컷은 확정된건가요?? 생윤 30점이라 3등급이 간절한데 그냥 포기하는게...
-
저는 작년에 그 긴 꼬리도 못잡았네요 ㅠㅠ 작년기준 396점인가 그래가지고
-
치대, 약대, 수의대 가능할까요? 가능하다면 어디대학쯤까지 가능할까요?
-
둘 다 읽을건데 뭐먼저읽을까요
-
한식으로 미슐랭 3스타가 뛰어난지 일식으로 미슐랭 3스타가 뛰어난지 이야기하는데...
-
중대에서도 로스쿨 젤 많이 보내는 공공인재 다니는데 여기만 봐도 학점 따는거 일단...
-
경북의를 써야 한다는 게 왜 갑자기 지금 생각나는데
-
일년동안 국어 공부라고는 언매 개념 말고는 아무것도 안 했습니다. 그래도 국어는 6...
-
수능수준 미적분으로 커버되는지궁금함
-
이시점에 성적표 인증 없이 XXX 강사님 덕분에 1등급/xx점 받았습니다...
-
군대 질문 2
오늘 신검인데 신검을 받고 입영통지서가 날라오면 그때 군대 연기 가능한가요?
-
저도 그 날먹좀 격하게 하고싶어요
-
무릎꿇고 빔뇨
-
loss쿨이잖아 ㅋㅋㅋㅋㅋ 옯하하하하하
-
ㅈㄱㄴ
-
근데 저분은 1
로스쿨, 의대 둘 다 쟁취하지 못 하셨는데 왜 화가 나신 것...?
-
이미 사고회로가 수능에 박혀있으면 수능절대주의적인 사고로 다 바라볼 수 밖에 없음...
-
시이이발 0
나도 메타에서일하고싶다
-
뭐지 이런 메타는 처음 보는 거 같은데
-
무한n수박고 의대갈필요가…
-
6모 44424 9모 442?? 정도 였는데 이렇게 나옴 갠적으로 외대글로벌 아주대...
-
7월쯤에 설경설로 주작글이었나 올라온 거 생각나네요 뭐 리트가 몇 점이고 어쩌고...
-
코딩 아예 안해본 사람 기준으로 말씀드립니다....
-
화학 44 2
** 이거 백분위 70대로 내려가는 가능세계 있음? 지금 82로 잡히는데 좃같네 진짜 ㅋㅋㅋ
-
진짜 몰라서 물어보는데 설경이 의치한약수 한테 다 밀리나요? 진짜 설경 이렇게 낮았어요..? ㅠㅠ
-
공대 및 자연대를 지망하는 코딩 꼬꼬마들을 위한 팁 10
바로 위키독스의 '점프 투 파이썬' 입니다...
-
어떻게하지
-
저번에는 리트는 의대못간 2군들이 치는 시험이라더니
-
ㄱㄱ헛
-
학원은 정해진 것 같은데 인강은 어디로 가시려나요..
-
자퇴생 현 고2 이번 수능 언매 2 영어 2 기하 4 과탐 말아먹어서 사문 세지로...
-
허
-
운전할 때도 이걸 좌회전 하라고? 이러심 ㅋㅋㅅㅋㅋㅋㅋ
전 작년에 저렇게 풀엇는데...
작년에 신승범쌤이 저런유형 나올거같다고 수해에서 강조해주셧슴 ㅇㅅㅇ
이거 얼마 전에도 어떤 분이 질문 올려서 누군가가 친절하게 대답해준 글이 있어요. 제 의견으로도 법선벡터로 푸는 게 가장 깔끔하고 직관적으로 들어오는 것 같습니다. 문제에 등장하는 면이 3개인데요, 그 중 두 개는 고정되어 있고, ABC 포함하는 면이 유동적이라고 볼 수 있겠지요.
ABC면적은 고정되어 있으니, ABC면과 면x-2y+2z=1 사이의 각도가 최소일 때를 묻는 문제이고요, 따라서 두 면의 법선벡터 사이 각도가 최소면 됩니다.
글로 읽으시면 헷갈릴 수도 있을테니 공간좌표에다가 그리면서 생각해보세요. yz평면의 법선벡터(1,0,0) 그려보시고요, ABC의 법선벡터는 (1,0,0)과 60도 각도를 이루어야 하니, 원점을 시점으로 ABC의 법선벡터를 그려보면 x축을 축으로 하고 원점을 꼭짓점으로 하는 원뿔의 밑면의 원주 위를 빙빙 도는 모양이 될거구요. 이 중 (1,-2,2)라는 법선벡터와 가장 각도가 작아질 때가 언젠지 보면 직관적으로 당연히 세 법선벡터가 한 평면 내에 있는 경우 중(2가지 경우인데, 그 중 하나이겠지요.)에서 일어나게 됩니다. 이 정도면 충분히 직관적이지 않나요..?
따라서 그 최소일 경우의 각도를 t라 하면, t = s-60도 (단, s는 (1,0,0)과 (1,-2,2)가 이루는 예각. cos s = 1/3)
cos t = cos s cos 60 + sin s sin 60 = (1/3) (1/2) + (루트8)/3 (루트3)/2 = (1+2루트6)/6
답은 1+2루트6. 이렇게요.
오 그러네요.. 감사합니다^^
x-2y+2z=1의 법선벡터 v1=(1,2,2)와 yz평면의 법선벡터 e=(1,0,0)은 고정되어 있습니다. 여기에 삼각형 ABC를 포함하는 평면의 법선벡터를 v2벡터라고 하면, 결국 원하는 정사영의 넓이의 최댓값은 v1벡터와 v2벡터가 이루는 각이 최대소일 때가 됩니다. 따라서 e벡터와 v1벡터, v2벡터를 시점을 일치시킨 후 v2벡터를 (v2벡터의 크기는 고정하고 각을 변화시키면 v2벡터는 e벡터를 포함하는 원뿔의 흔적을 남게게 됩니다. (나) 조건 때문에 v2, e벡터의 각은 일정)
따라서 v1벡터, v2벡터가 이루는 각이 최소가 되려면 e벡터와 v1벡터가 포함된 평면에 v2벡터가 놓여 있어야함을 알 수 있겠습니다.
감사합니다^^
저두 실제 시험장에선 법선벡터 두개로 비교해서
두 평면이 이루는 각 구하는 공식에 두 법선벡터 대입하고
잘 비비니까 보기에서 답이 될수 있는게 2(루트6)+1 밖에 없어서
겨우 풀었었네요 ㅋㅋ
그냥 삼각형이있는 평면 법선벡터를 (1,a,b)로 놓고푸시면 어처피 벡터비로푸는거니까 그냥 계산으로 나옵니다
아 이 풀이도 말씀드리려 했는데 까먹었네요.. 이렇게 풀어도 간단하지요. (고맙습니다..ㅎ)
(1,a,b) 랑 (1,0,0) 이루는 각도 60도니까 a^2 +b^2 =3 나오고요, 이 때
(1,a,b) 랑 (1,-2,2)가 이루는 각도의 cos값인 (1-2a+2b)/6의 최댓값을 구하는 문제니까,
다시 쓰면, a^2 +b^2 =3 일 때, (b-a)의 최댓값 구하는 문제입니다. 반지름 루트3인 원에서 기울기 1인 접선 그어보면 최댓값이 루트6 인 거 바로 나오지요. b-a=루트6 대입하면 cos최댓값이 (1+2루트6)/6 이라서 문제의 답을 얻습니다.
참고. 삼각형의 법선벡터가 (0,a,b)인 경우도 따져줘야 엄밀하긴 한데 결국 이 경우는 필요없습니다.
코시슈바르츠 부등식 말고 삼각치환 해보세요 그게 아마 출제의도 같네요
아니면 벡터의 내적이나 원과 접선 둘다 이용가능
작년 셤장에서 그냥 무식하고도 단순하게 푼것같네요...ㅠㅠ
삼각형 ABC와 yz평면이 이루는 예각의 크기는 60도이고
(1,-2,2) (1,0,0)이 이루는 각의 크기를 b라 놓을 때 cosb는 3분의1이 되죠..
삼각형 ABC와 평면 x-2y-2z=1이 이루는 각의 크기는 b+60 혹은 b-60이 되는데
정사영의 넓이가 최대가 되려면 예각 크기가 최소가 되어야 하므로
b-60이 되고...
6cos(b-60)을 구하면 답이 나오죠