기하 문제 설문.
이 문제의 올바른 풀이와 출제의도는 무엇일까요?!
먼저 풀고 스크롤을 내려주세요.
설문!
1.다음 보기 중 가장 먼저 떠오른 풀이 하나만 고른다면? (처음에 시도한 풀이를 알려주세요!)
1) 음함수미분법, 이차곡선과 접선.
2) 이차곡선과 직선이 만나니까 접선공식 사용. (판별식D)
3) 이차곡선 위의 점에서 접선의 방정식 공식 사용.
2.다음 보기 중 올바른 풀이는 무엇이라 생각하나요?
1) 음함수미분법, 이차곡선과 접선.
2) 이차곡선과 직선이 만나니까 접선공식 사용. (판별식D)
3) 이차곡선 위의 점에서 접선의 방정식 공식 사용.
3.다음 보기 중 출제자가 의도한 풀이는 무엇이라 생각하나요?
1) 음함수미분법, 이차곡선과 접선.
2) 이차곡선과 직선이 만나니까 접선공식 사용. (판별식D)
3) 이차곡선 위의 점에서 접선의 방정식 공식 사용.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
스나로 써봐도 될까요……… 5명 뽑아요 컨설팅에서는 지를거면 르꼬르외식경영 쓰라던데 얜 2칸이라
-
대학을 잃고 남성성을 얻는다
-
2월부터하자 걍
-
4합부턴 ㅋㅋ..
-
모든 사람들은 자신들이 못가진거에 열등감 가지면서 살려나
-
6모 13241 수능 12234 그냥 병신이라는거임 꺄하하...
-
수학 100 못받은게 약간 계속 머리에 맴돎요
-
저능해서
-
그건 사실인거야
-
중앙대 자퇴 0
중앙대인데 자퇴사류 월욜에 냈는데 아직까지 처리가 안된거 같아요... 개인사정으로...
-
도파 곧 말출임 실화냐?
-
"무소속"
-
아 상지대 한의예과 포기하고 상지대 경영 쓰면 무조건 붙는건데 ㅠㅠㅠㅠㅠ
-
쓰면 붙는 낮과 포기하고 쓰는건 진짜 심리적 압박감이 미쳐요 진짜
-
진짜 미칠것같아
-
완전 최종인가요?
-
오늘은 이거 좀 주기적으로 올림
-
배고푸다 4
그치
-
5칸 버리고 그냥 3칸 쓰려고 함... 엄마아빠죄송합니다
-
수시 다 떨어지고 관람하는건 하
-
칸수 왜 오름? 0
성적표나오고 1주까지 6칸최초합>하루 후 5칸최초>5일뒤 4칸불합>2일전3칸>어제...
-
아
-
지금이 더 떨리네 ㅋㅋ 애초에 수능은 걍 긴장 1도 안했는데
-
서성한 물리+전전 복전 vs 연고 낮과(전자랑 전혀 무관한 자연계열)+전전 복전...
-
최종업뎃이 이러네여 야수의 심장으로 질르면 ㅈ대갯죠?
-
뭐 별로다 괜찮다 라는 의견이 있어서
-
칼기상 5
아얏
-
연대 한양대 이번에 내신 반영한다고 들었는데 3학년 1학기까지인가요...
-
뭐죠….. 쓰기에는 1칸이였어서 너무 쫄리는데
-
정상화가 일찍됐스 이또한 낙지의 은혜겠지요
-
5 -9칸인 사과대보다 4칸인 경영경제가 더 안정인거같은기분임 왜 칸수를...
-
본인 인생 8
현역 -> 동국 법 합격 경북 경영 합격 아 ~ ㅆㅂ 현역 건동홍이니까 재수하면...
-
업뎃된건가요 7
칸수가 또바뀌엇네
-
올만에 무물보 8
-
그래야 안 쓰지
-
대충 살자 12
고대식 680 들고 미디어 1순위 박는 이새끼처럼..
-
754 드가자 0
4칸합격기원
-
내일 방학식이라 오전에 일찍 끝나면 오늘이 마지막 급식일수도
-
조졌다 이거 ㅋㅋㅌㅌㅌㅌㅋㅋㅋ
-
이게 사람마음이 안된다는걸 알면서도 혹시 하게 되네요..
-
무물보 괜히함 3
더 외로워지기만 하는데요ㅜ
-
모르겠다 0
4칸 지른다.
-
다이빙 0
슈웅
-
아침메뉴 결정 3
-
무물보 8
-
밤새고 접수하고 대회하기 저번에 졸릴때 롤하다가 스킬로 벽부수고 나가야지 히히...
-
결정했다.. 0
631 로 쓴다
-
연세대 ㅁㅊ 0
4개 학과가 4일동안 번갈아가면서 하나씩 5칸됐다가 다음날 4칸되고 이러네...
-
..
-
어제 아침에일어났는데 원서접수까지 깨있을수있겟죠?? 0
배가아파서 잠이안옴.. 아침에 파이널 콜도 있고 한데 그냥 3시쯤까지 깨있다가 원서넣고 자야겟음
논리적으로 모순이 없으면 풀이법들간의 우열관계를 따지는 것 자체가 무의미할 가능성이 크죠...
맞아요. 논리적 모순이 없고 정답을 맞추었다. 완벽한 풀이입니당. 질문이라기보단 설문에 가까워서... 여쭈어보고있어요.
333
저는 111...
혹시 수능을 이미 보셨거나 수험생리신가용!?
학력고사 봤었습니다...
아하... 그렇군요!
혹시 학년이 어찌되시는지요!?
그때그때 필요한 것을 쓸수만 있으면 됩니다
저 문제를 풀때 필요한것이 무엇인지 여쭈어보는중입니다~
이제 댓글이 없을것 같으니.. ㅎㅎ 사실 이전 교육과정에서는 이차곡선의 접선이라는 단원이 있었고 1번 음함수 미분법이 출제의도일 것입니다.
그런데 이 문제는 내년 수능을 보는 학생을 대상으로한 평가원이 출제한 2022 예비시행입니다. 그리고 현재 기하교과서에 이차곡선과 '접'선이라는 단원은 사라졌습니다. 현재는 이차곡선과 '직'선이라는 단원으로 바뀌며 음함수 미분법을 배우지 않습니다.(미적분에서 배우지만 선택과목이라 기하를 선택하면 모른다고 가정...!)
그래서 1,2,3 모든 풀이가 정확하고 올바른 풀이이지만 바뀐 관점에서는 3번의 풀이가 출제의도가 된다고 봅니다. 개정 교과서는 타원과 직선이 만난다는 것을 판별식으로 증명하고 있는데 그냥 접선의 방정식과 곡선 위의 점에서의 접선을 구별하여 증명해두었습니다.
이때 문제에서의 표현 중
'우변의 상수값이 1이 아닐때' (양변을 19로 나누어 1로 만들어주어도 됐을텐데..)
그리고 1사분면의 '한 점'에서 접한다라는 표현 (그냥 접한다 라고 해도 됐을텐데..)
곡선위의 점에서의 접선을 쓰면 계산에 유리할 것이라는 평가원의 메세지를 담고있는 것 같아 설문을 해보았습니다.
실제 음함수 미분법으로 풀때와 곡선위의 점에서의 접선으로 풀때는 연산량이 매우 짧으나 그냥 타원의 접선을 이용하여 풀이를 하면 연산량이 상당해집니다.
참여해주셔서 감사합니다!!