아름드리미리 [330814] · MS 2010 · 쪽지

2011-07-21 00:38:41
조회수 869

적분 질문 두 가지 부탁드립니다.

게시글 주소: https://oldclass.orbi.kr/0001483601




1.
문제 : ∫(위1 아래0) (x^2-x)dx +∫(위2 아래1) 3(x-1)(x-2)dx + ∫(위5 아래3) 4(x-3)(x-5)dx=?




답은 물론 구했습니다. 그런데 답지를 보니 ∫(위1 아래0) (x^2-x)dx = ∫(위1 아래0) x(x-1)dx = -1/6 × (1-0)^3 = -1/6 이라는 식으로 해서 식을 간단하게 놓고 빠르게 풀었더군요. 저는 그냥 식을 무식하게 다 적분해서 일일이 풀었는데......제가 독학이라서 열심히 문제지를 확인했는데 어떻게 이런 식이 나오는지 알 수가 없네요.




2. 문제 : ∫(위x 아래3) (x-t)f(t)dt=x^3+ax^2-15x+36을 만족시키는 미분가능한 함수 f(x)에 대하여 f(3)=b일 때, a+b의 값은? (참고로 a,b 상수)




답은 a=-2, b=14해서 12인데요.



제가 이거 식을 보니 ∫(위x 아래3) (x-t)f(t)dt = x∫(위x 아래3) f(x)dt - ∫(위x 아래3) tf(t)dt임을 이용해 주어진 식의 양변을 x에 대해 미분하여



d/dx ∫(위x 아래 3) (x-t)f(t)dt= ∫(위x 아래 3) f(x)dt + xf(x) - xf(x)가 나오던데...이 부분이 이해가 안 됩니다. 어떻게 나오는지요.




제가 독학이라 막힐 땐 좀 절망적으로 막히네요..ㅠ두 개 부탁드립니다.

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • sos440 · 104180 · 11/07/21 12:21 · MS 2005

    (1) a < b 일 때, 다음 꼴의 적분에 대한 일반적인 공식이 존재합니다.

    ∫_{from a to b} (x - a)^m (x - b)^n dx

    특히 m = n = 1 일 경우에는 많은 문제집에서 소개하고 일부 교과서에서도 문제 등을 통해 소개하는 결과로

    ∫_{from a to b} (x - a)(x - b) dx = -(b-a)^3 / 6

    가 있습니다. 이 식을 유도하는 방법은 여러가지가 있습니다만, 노가다를 뛰셔도 좋고, 치환적분을 해 보아도 좋고, 뭐 방법은 정말 많지요.




    (1) 사람들이 개념을 강조하는 이유가 바로 이런 데 있습니다. 우리가 매일매일(?) 적분을 계산할 때 사용하는 위대한 정리인 정적분의 기본정리

    [정리:정적분의 기본정리] 함수 f(x)가 [a, b]에서 연속이면, F(x) = ∫_{from a to x} f(t) dt 로 정의된 함수 F(x)는 [a, b]에서 미분 가능하며 F'(x) = f(x)를 만족한다.

    를 다시 상기해보세요. 사실상 우리가 더 즐겨 쓰는 것은 이것의 따름정리인

    [따름정리] f(x)가 [a, b]에서 연속이고 F(x)가 f(x)의 임의의 부정적분이면, ∫_{from a to b} f(x) dx = F(b) - F(a) 이다.

    이지만, 그것보다 더 근본적인 것이 바로 정적분의 기본정리입니다. 그리고 이에 의해서

    d/dx{ ∫_{from 3 to x} (x - t)f(t) dt }
    = d/dx { x∫_{from 3 to x} f(t) dt } - d/dx { ∫_{from 3 to x} f(t) dt }
    = ∫_{from 3 to x} f(t) dt + xf(x) - xf(x)

    가 됩니다. 여기서 두 번째 등호에 정적분의 기본정리가 매우 명확하게 자기주장을 하면서 쓰인 것이 보이시나요?

  • 아름드리미리 · 330814 · 11/07/23 09:11 · MS 2010

    친절한 답변 감사드립니다 !! 계속 보면서 이해할게요!