이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까?
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
그렇습니다. 그래서 질문과 답변 칼럼을 올려볼거에요
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
보신분 많이 없으실텐데..ㅋㅋ
오늘은 칼럼 요청이 들어와서 쓰게 되었습니다.
일단 저번주의 답을 첨부합니다.
매우 간단하죠..? ㅋㅋ
이제 오늘의 칼럼 띄워봅니다!
점 (a,b)를 x축으로 m만큼 평행이동하면 (a+m,b)가 되는데
왜 함수 y=f(x)를 x축으로 m만큼 평행이동하면 y=f(x-m)이 될까?
분명 점을 x축으로 평행이동 하면 x값이 늘어나는거 맞겠죠?
하지만 그래프의 x값은 왜 빼지는걸까요?
그래프의 모든 점의 x값이 늘어난것이 맞는데 말이죠.
많은 의견을 덧글로 달아주세요! 제가 생각하는 답은 다음 칼럼에 달겠습니다.
힌트를 드리자면.. 저 그림을 잘 보셔요! x값은 변할겁니다 x축 평행이동이니까요.
물론.. 제 답이 정답은 아니겠지만.. 꽤 설득력 있을거에요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
주변에 아는 놈 한명이 이런데 잘나지도 않았으면서 주위에서 그 ㅈㄹ 하는거 꼴받음...
-
진학사 순위에서 점수가 너무 높은 애들이 여기 쓰지도않을건데 모의지원한걸 셀프...
-
가면 분필날라오나
-
친구들이 7
넌 그만 좀 봐라 라고 해요 제가 비정상인가요?
-
이 맛을 모르는사람은 없어야 함
-
진도를 못나가...
-
피램 샀는데 이렇게 주네 ㅋㅋㅋㅋ
-
99% 되려나
-
수2처음배울때 위치속도가속도 얘네 첨배울때 진짜 편한거같네요 너무 당연하다고 느껴짐
-
수능영어 1도 못맞추고 하스갈라했노?
-
4 대형 5 (6칸에 걸친 최초합 진동) 18명 7 대형 다군 회생보험 4는 떨어질...
-
강기원 수1특강 vs 뉴런(수1 특강 들어본 사람 있음?) 0
정규반이 수2+미적이라 수1도 뭐 하긴 해야하는데 머 고름?
-
이화여대랑 인하대 제 부모님 출신 대학임 엄빠 두분다 좀 억울하다고 자기때는 높았다고 하셔서..
-
평가원 #~#
-
왤케 춥지 아 옆에 아무도 없어서 그런거구나
-
연고대 낙지 0
보통 연고대 표본 언제쯤 많이 채워지나요 ?
-
전에 저장해놓은 거 같은데 안 보임ㅠㅠ
-
이상한 새끼가 있네 36
흠 저격해볼까
-
이런짤 올리면 수요있나요?
-
연세대 hass 7
최저도 못맞추는 버러지들이 이래 많노 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
팔로워 0일듯
-
쪽지로 질문 좀 가능합니까
-
성별 남자 학부 서강대 수학 성적 6모: 96점 98 9모: 100점 98 수능:...
-
경한vs단치 0
궁금뇨
-
과목별로 인강 얼마나 듣는게 맞을까요?
-
경제나 통계학과 고대(교과우수)는 7~8칸 안정권인데 굳이 위험부담해서 6칸인...
-
저는 올해 강하 목동관 다녔던 학생입니다~ 논술로 원하는 곳 빨리 합격하고 잘 쉬고...
-
뭐하지
-
고2 안정 2등급인데요, 마더텅 풀때 심경, 주제, 제목 이런거까지 다풀어야되나요?...
-
아니 2배수도 안들어온 과가 거의 절반인데 이거 맞아요…? 원래 이런가요...
-
루돌프 사슴 코는 개코! ㅇㄱㄹㅇ
-
사탐런 후 0
자유전공 학부 로 입학 공대로 진학 별로임?
-
장학금 받고 다닐겸 애당초 원래 목표기도 했고
-
하스 이월 55명 10
레전드 상황 발생이네요 이거
-
제곧내
-
표본이 반 차있는데 이거 맞나
-
정시 전화로 추합되면 합격증 발급이 가능한 건가요? 아니면 등록금 넣고 등록증만...
-
cpa 시험 준비한다 치면 보통 몇년정도 걸리나요?
-
팝콘묵고싶은데 간식으로먹으면 살찌잔아요
-
사실상 국어를 보지 않겠다네 ㅅㅂ ㅋㅋ
-
저 초딩때도 있었던 단어인데..
-
눈 들어 관악을 보게 하라
-
여유 있으면 아비꼬 ㄱㄱ혓?
-
실제지원 안 해놓고 쓰는 사람들이 무섭단 말이지
-
좋은 아침 10
좋은아침이에요 이제야일어났네요
-
내가 틀리겠지...?
-
연대 이월 0
어디서 봐요?? 입학처에 들어가면 있나요
-
왜 캐롤 아직도 틀어
원래 x값에 m을 더한 값을 대입해서 원함수의 값이 나오는 식이 되어야 하니까 그런가요??
맞습니다!
축의 이동
축의 이동은 어떤 개념인가요?
설명해주시겠어요??
간단히 이야기하자면, 도형은 가만히 있고 도형을 설명해주는 두 기저의 기준점 (축) 을 반대로 움직인다고 생각하는거죠.
사실 이해할 수 있는 얘기긴 한데..
교육과정에서는 축을 이동하는 법을 안배우긴 해요.
그래도 이해하기 좋은 설명이 될 것 같아요!
사실 교육과정 해설서에도 명시되어 있어요.
'도형의 평행이동에 대해 설명할 때에는 축의 이동을 통해 설명하지 않는다.'라고
다만 굉장히 직관적으로 이해가 되고 축의 의미가 무엇인지 생각만 해보면 바로 이해가 되는지라 ㅎㅎ
(x,y) = (a,b)(원래 함수 위의 점)
(X,Y) = (a+m,b)(x축으로 +m만큼 이동한 함수 위의 점)
(a,b) = (X-m,Y) = (x,y)
따라서 x축으로 +m만큼 이동한 임의의 x,y에 대해
(x,y) = (X-m,Y)를 넣어서 식을 정리하니까
결국 +로 이동했으나 부호는 -로 붙어 나오게 되는것
아마 첨에 배울때 이랫던거같은데 맞는지는 잘몰겟네요;
네 맞아요. 그게 교과서의 설명 방식입니다.
그 수식의 의미를 쉽게 설명하면 어떻게 될까요?
음... 명쾌하게 설명하기가 어렵네요. 생각을 해봐야겠어요...
저도 이 주제에 대해 많은고민했었는데, 제가 얻은 결론은 이렇습니다.
예를들어 정의역이 0이상 1이하인 함수가 있다고 칩시다. 이 함수를 x축방향으로 1만큼 이동시킨다는 것은 정의역을 1이상 2이하로 변화시킨다는것이에요. 하지만 치역, 즉 y값은 변하지 않아야 하죠. 이런 점을 고려하면 함수를 x축방향으로 이동시킬때는 정의역범위를 변화시키면서, y값은 유지시켜줘야해요. 그래서 정의역을 이동시키려는 값만큼 증가시키고, 그래프식 안에있는 x는 이동시키려는 값만큼 빼주는겁니다.
그런데 보통 함수에 대해 논의할때는 실수전체가 정의역의 범위가 되죠. 그래서 증가된 정의역범위가 드러나지 않고, 그래프에서 x가 x-m으로 변하는것만 보이게됩니다.
맞습니다..만 굳이 정의역을 제한하지 않아도 될것같아요
y값이 변하지 않는다는 말만 해주셔도 될듯합니다!
으어... 많은 분들이 생각을 올려주시네요.. 감사합니다!
모든 덧글이 다 옳은 설명이라.. 제가 뭐라 하기 어렵네요.
하지만 제가 생각하는 답은 한줄입니다! 꽤 설득력 있다고 저는 생각해요
저 식과 그림에서 간단한 특징 하나를 뽑을 수 있어요.
뭐랄까 마치 숨은그림찾기 하는 것과 같다고 봅니다.
굳이 이 개념뿐만 아니에요. 여러분은 개념을 깊이 생각하고 있나요?
이렇게 고민 해보신 적이 있으신가요?
저는 생각과 고민이 공부의 양이라 생각합니다. 생각과 고민은 이렇게 질문에서 생기게됩니다.
저렇게 개념에 대해 접근해보다 보면 정말 공부 많이 될것같아요... 수학적 직관력이 빵빵 터질것같은!
평행이동한 함수를 새로운 함수라고 생각하면 이 새로운 함수의 x에다가 뭘 집어넣어야 평행이동 이전에 함수값과 같아질까? 라고 생각해보면 기존 함수를 x 축으로 +m 평행이동한 함수가 새로운 함수이니 이 함수에는 x 에서 +m 만큼 빼주면 이전의 함수와 같은 값을 같겠구나 ! 라고 생각해서 새로운 함수 = f(x-m)
요로케 설명해보고싶네요
맞습니다! 다들 너무 맞는 말씀이어요.
다만 어려운 설명일 수 있어요.
사실 그렇다고 해도 어쨌든 자기가 이해할 수 있는 좋은방식으로 이해하면 장땡이죠.
결국 개념에 대한 고민이란건 최대한 쉬운언어로 받아들이는것.
그걸 사용하기 쉽도록 보이는것을 말합니다.
저도 이거 잘하는지 잘 모르겠어요 ㅎㅎ
덧글 달아주신 모든 의견이 맞는 얘기해주셔서.. 쓸게없네요ㅋㅋ
이번주 토요일 저녁에 칼럼 올리겠습니다.
참 간단한 의문인데, 헷갈릴법한 질문이기도 해요
전 칼럼의 질문은 이차방정식의 해법의 공통점입니다.
저는 10-가의 내용을 배웠습니다. 지금 수1 전 교육과정이죠
10-가에서는 일차방정식 다음에 이차방정식 단원이 있었습니다.
그것으로 유추해보면 이차방정식의 풀이의 핵심을 끌어낼 수 있었죠.
교과서만으로 의문을 갖고 해결하는 공부를 많이 했습니다.
그 과정까지 아울러 설명해보도록 하겠습니다.
생각과 고민이 공부의 양입니다.
교과서만으로도 충분히 공부할 것이 있어요.
그것을 여러 질문으로 전달하도록 하겠습니다